Random Thue and Fermat equations
Acta Arithmetica, Tome 167 (2015) no. 2, pp. 189-200
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider Thue equations of the form $ax^k+by^k = 1$, and assuming the truth of the $abc$-conjecture, we show that almost all locally soluble Thue equations of degree at least three violate the Hasse principle. A similar conclusion holds true for Fermat equations $ax^k+by^k+cz^k = 0$ of degree at least six.
Keywords:
consider thue equations form assuming truth abc conjecture almost locally soluble thue equations degree least three violate hasse principle similar conclusion holds fermat equations degree least six
Affiliations des auteurs :
Rainer Dietmann 1 ; Oscar Marmon 2
@article{10_4064_aa167_2_6,
author = {Rainer Dietmann and Oscar Marmon},
title = {Random {Thue} and {Fermat} equations},
journal = {Acta Arithmetica},
pages = {189--200},
publisher = {mathdoc},
volume = {167},
number = {2},
year = {2015},
doi = {10.4064/aa167-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa167-2-6/}
}
Rainer Dietmann; Oscar Marmon. Random Thue and Fermat equations. Acta Arithmetica, Tome 167 (2015) no. 2, pp. 189-200. doi: 10.4064/aa167-2-6
Cité par Sources :