Random Thue and Fermat equations
Acta Arithmetica, Tome 167 (2015) no. 2, pp. 189-200.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider Thue equations of the form $ax^k+by^k = 1$, and assuming the truth of the $abc$-conjecture, we show that almost all locally soluble Thue equations of degree at least three violate the Hasse principle. A similar conclusion holds true for Fermat equations $ax^k+by^k+cz^k = 0$ of degree at least six.
DOI : 10.4064/aa167-2-6
Keywords: consider thue equations form assuming truth abc conjecture almost locally soluble thue equations degree least three violate hasse principle similar conclusion holds fermat equations degree least six

Rainer Dietmann 1 ; Oscar Marmon 2

1 Department of Mathematics Royal Holloway, University of London Egham TW20 0EX, UK
2 Mathematisches Institut Georg-August-Universität Göttingen Bunsenstr. 3-5 37073 Göttingen, Germany
@article{10_4064_aa167_2_6,
     author = {Rainer Dietmann and Oscar Marmon},
     title = {Random {Thue} and {Fermat} equations},
     journal = {Acta Arithmetica},
     pages = {189--200},
     publisher = {mathdoc},
     volume = {167},
     number = {2},
     year = {2015},
     doi = {10.4064/aa167-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa167-2-6/}
}
TY  - JOUR
AU  - Rainer Dietmann
AU  - Oscar Marmon
TI  - Random Thue and Fermat equations
JO  - Acta Arithmetica
PY  - 2015
SP  - 189
EP  - 200
VL  - 167
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa167-2-6/
DO  - 10.4064/aa167-2-6
LA  - en
ID  - 10_4064_aa167_2_6
ER  - 
%0 Journal Article
%A Rainer Dietmann
%A Oscar Marmon
%T Random Thue and Fermat equations
%J Acta Arithmetica
%D 2015
%P 189-200
%V 167
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa167-2-6/
%R 10.4064/aa167-2-6
%G en
%F 10_4064_aa167_2_6
Rainer Dietmann; Oscar Marmon. Random Thue and Fermat equations. Acta Arithmetica, Tome 167 (2015) no. 2, pp. 189-200. doi : 10.4064/aa167-2-6. http://geodesic.mathdoc.fr/articles/10.4064/aa167-2-6/

Cité par Sources :