On arithmetic progressions on Edwards curves
Acta Arithmetica, Tome 167 (2015) no. 2, pp. 117-132
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $m\in {\mathbb {Z}}_{>0}$ and $a,q\in {\mathbb {Q}}$. Denote by $\mathcal {AP}_{m}(a,q)$ the set of rational numbers $d$ such that $a,a+q,\dots ,a+(m-1)q$ form an arithmetic progression in the Edwards curve $E_d : x^2+y^2=1+dx^2 y^2$. We study the set $\mathcal {AP}_{m}(a,q)$ and we parametrize it by the rational points of an algebraic curve.
Keywords:
mathbb mathbb denote mathcal set rational numbers dots m form arithmetic progression edwards curve study set mathcal parametrize rational points algebraic curve
Affiliations des auteurs :
Enrique González-Jiménez 1
@article{10_4064_aa167_2_2,
author = {Enrique Gonz\'alez-Jim\'enez},
title = {On arithmetic progressions on {Edwards} curves},
journal = {Acta Arithmetica},
pages = {117--132},
publisher = {mathdoc},
volume = {167},
number = {2},
year = {2015},
doi = {10.4064/aa167-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa167-2-2/}
}
Enrique González-Jiménez. On arithmetic progressions on Edwards curves. Acta Arithmetica, Tome 167 (2015) no. 2, pp. 117-132. doi: 10.4064/aa167-2-2
Cité par Sources :