Algebraic $S$-integers of fixed degree and bounded height
Acta Arithmetica, Tome 167 (2015) no. 1, pp. 67-90
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $k$ be a number field and $S$ a finite set of places of $k$ containing the archimedean ones. We count the number of algebraic points of bounded height whose coordinates lie in the ring of $S$-integers of $k$. Moreover, we give an asymptotic formula for the number of $\overline {S }$-integers of bounded height and fixed degree over $k$, where $\overline {S }$ is the set of places of ${\overline k}$ lying above the ones in $S$.
Keywords:
number field finite set places nbsp containing archimedean count number algebraic points bounded height whose coordinates lie ring s integers moreover asymptotic formula number overline integers bounded height fixed degree where overline set places overline lying above nbsp
Affiliations des auteurs :
Fabrizio Barroero 1
@article{10_4064_aa167_1_4,
author = {Fabrizio Barroero},
title = {Algebraic $S$-integers of fixed degree and bounded height},
journal = {Acta Arithmetica},
pages = {67--90},
publisher = {mathdoc},
volume = {167},
number = {1},
year = {2015},
doi = {10.4064/aa167-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa167-1-4/}
}
Fabrizio Barroero. Algebraic $S$-integers of fixed degree and bounded height. Acta Arithmetica, Tome 167 (2015) no. 1, pp. 67-90. doi: 10.4064/aa167-1-4
Cité par Sources :