An extension of the Khinchin–Groshev theorem
Acta Arithmetica, Tome 167 (2015) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a version of the Khinchin–Groshev theorem in Diophantine approximation for quadratic extensions of function fields in positive characteristic.
DOI : 10.4064/aa167-1-1
Keywords: prove version khinchin groshev theorem diophantine approximation quadratic extensions function fields positive characteristic

Anish Ghosh 1 ; Robert Royals 2

1 School of Mathematics Tata Institute of Fundamental Research Mumbai, 400005, India
2 School of Mathematics University of East Anglia Norwich, NR4 7TJ, UK
@article{10_4064_aa167_1_1,
     author = {Anish Ghosh and Robert Royals},
     title = {An extension of the {Khinchin{\textendash}Groshev} theorem},
     journal = {Acta Arithmetica},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {167},
     number = {1},
     year = {2015},
     doi = {10.4064/aa167-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa167-1-1/}
}
TY  - JOUR
AU  - Anish Ghosh
AU  - Robert Royals
TI  - An extension of the Khinchin–Groshev theorem
JO  - Acta Arithmetica
PY  - 2015
SP  - 1
EP  - 17
VL  - 167
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa167-1-1/
DO  - 10.4064/aa167-1-1
LA  - en
ID  - 10_4064_aa167_1_1
ER  - 
%0 Journal Article
%A Anish Ghosh
%A Robert Royals
%T An extension of the Khinchin–Groshev theorem
%J Acta Arithmetica
%D 2015
%P 1-17
%V 167
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa167-1-1/
%R 10.4064/aa167-1-1
%G en
%F 10_4064_aa167_1_1
Anish Ghosh; Robert Royals. An extension of the Khinchin–Groshev theorem. Acta Arithmetica, Tome 167 (2015) no. 1, pp. 1-17. doi : 10.4064/aa167-1-1. http://geodesic.mathdoc.fr/articles/10.4064/aa167-1-1/

Cité par Sources :