On large values of the Riemann zeta-function on short segments of the critical line
Acta Arithmetica, Tome 166 (2014) no. 4, pp. 349-390.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We obtain a series of new conditional lower bounds for the modulus and the argument of the Riemann zeta function on very short segments of the critical line, based on the Riemann hypothesis. In particular, we prove that for any large fixed constant $A>1$ there exist (non-effective) constants $T_{0}(A)>0$ and $c_{0}(A)>0$ such that the maximum of $|\zeta (0.5+it)|$ on the interval $(T-h,T+h)$ is greater than $A$ for any $T>T_{0}$ and $h = (1/\pi)\ln\ln\ln{T}+c_{0}$.
DOI : 10.4064/aa166-4-3
Keywords: obtain series conditional lower bounds modulus argument riemann zeta function short segments critical line based riemann hypothesis particular prove large fixed constant there exist non effective constants maximum zeta interval t h greater

Maxim A. Korolev 1

1 Steklov Mathematical Institute Russian Academy of Sciences Gubkin St., 8 119991 Moscow, Russia and National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) Kashirskoye sh., 31 115409 Moscow, Russia
@article{10_4064_aa166_4_3,
     author = {Maxim A. Korolev},
     title = {On large values of the {Riemann} zeta-function on short segments of the critical line},
     journal = {Acta Arithmetica},
     pages = {349--390},
     publisher = {mathdoc},
     volume = {166},
     number = {4},
     year = {2014},
     doi = {10.4064/aa166-4-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-3/}
}
TY  - JOUR
AU  - Maxim A. Korolev
TI  - On large values of the Riemann zeta-function on short segments of the critical line
JO  - Acta Arithmetica
PY  - 2014
SP  - 349
EP  - 390
VL  - 166
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-3/
DO  - 10.4064/aa166-4-3
LA  - en
ID  - 10_4064_aa166_4_3
ER  - 
%0 Journal Article
%A Maxim A. Korolev
%T On large values of the Riemann zeta-function on short segments of the critical line
%J Acta Arithmetica
%D 2014
%P 349-390
%V 166
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-3/
%R 10.4064/aa166-4-3
%G en
%F 10_4064_aa166_4_3
Maxim A. Korolev. On large values of the Riemann zeta-function on short segments of the critical line. Acta Arithmetica, Tome 166 (2014) no. 4, pp. 349-390. doi : 10.4064/aa166-4-3. http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-3/

Cité par Sources :