On large values of the Riemann zeta-function on short segments of the critical line
Acta Arithmetica, Tome 166 (2014) no. 4, pp. 349-390
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We obtain a series of new conditional lower bounds for the modulus and the argument of the Riemann zeta function on very short segments of the critical line, based on the Riemann hypothesis. In particular, we prove that for any large fixed constant $A>1$ there exist (non-effective) constants $T_{0}(A)>0$ and $c_{0}(A)>0$ such that the maximum of $|\zeta (0.5+it)|$ on the interval $(T-h,T+h)$ is greater than $A$ for any $T>T_{0}$ and $h = (1/\pi)\ln\ln\ln{T}+c_{0}$.
Keywords:
obtain series conditional lower bounds modulus argument riemann zeta function short segments critical line based riemann hypothesis particular prove large fixed constant there exist non effective constants maximum zeta interval t h greater
Affiliations des auteurs :
Maxim A. Korolev 1
@article{10_4064_aa166_4_3,
author = {Maxim A. Korolev},
title = {On large values of the {Riemann} zeta-function on short segments of the critical line},
journal = {Acta Arithmetica},
pages = {349--390},
publisher = {mathdoc},
volume = {166},
number = {4},
year = {2014},
doi = {10.4064/aa166-4-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-3/}
}
TY - JOUR AU - Maxim A. Korolev TI - On large values of the Riemann zeta-function on short segments of the critical line JO - Acta Arithmetica PY - 2014 SP - 349 EP - 390 VL - 166 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-3/ DO - 10.4064/aa166-4-3 LA - en ID - 10_4064_aa166_4_3 ER -
Maxim A. Korolev. On large values of the Riemann zeta-function on short segments of the critical line. Acta Arithmetica, Tome 166 (2014) no. 4, pp. 349-390. doi: 10.4064/aa166-4-3
Cité par Sources :