Wild primes of a self-equivalence of a number field
Acta Arithmetica, Tome 166 (2014) no. 4, pp. 335-348
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $K$ be a number field. Assume that the 2-rank of the ideal class
group of $K$ is equal to the 2-rank of the narrow ideal class group
of $K$. Moreover, assume $K$ has a unique dyadic prime $\mathfrak d$ and the
class of $\mathfrak d$ is a square in the ideal class group of $K$.
We prove that if $\mathfrak p_1,\dots,\mathfrak p_n$ are finite primes of $K$ such that$\bullet$
the class of $\mathfrak p_i$ is a square in the ideal class group of $K$ for
every $i\in\{1,\dots,n\}$,$\bullet$ $-1$ is a local square at $\mathfrak p_i$ for every nondyadic
$\mathfrak p_i\in\{\mathfrak p_1,\dots,\mathfrak p_n\}$,then $\{\mathfrak p_1,\dots,\mathfrak p_n\}$ is the wild set of some
self-equivalence of the field $K$.
Keywords:
number field assume rank ideal class group equal rank narrow ideal class group moreover assume has unique dyadic prime mathfrak class mathfrak square ideal class group prove mathfrak dots mathfrak finite primes bullet class mathfrak square ideal class group every dots bullet local square mathfrak every nondyadic mathfrak mathfrak dots mathfrak mathfrak dots mathfrak wild set self equivalence field
Affiliations des auteurs :
Alfred Czogała 1 ; Beata Rothkegel 1
@article{10_4064_aa166_4_2,
author = {Alfred Czoga{\l}a and Beata Rothkegel},
title = {Wild primes of a self-equivalence of a number field},
journal = {Acta Arithmetica},
pages = {335--348},
publisher = {mathdoc},
volume = {166},
number = {4},
year = {2014},
doi = {10.4064/aa166-4-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-2/}
}
TY - JOUR AU - Alfred Czogała AU - Beata Rothkegel TI - Wild primes of a self-equivalence of a number field JO - Acta Arithmetica PY - 2014 SP - 335 EP - 348 VL - 166 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-2/ DO - 10.4064/aa166-4-2 LA - en ID - 10_4064_aa166_4_2 ER -
Alfred Czogała; Beata Rothkegel. Wild primes of a self-equivalence of a number field. Acta Arithmetica, Tome 166 (2014) no. 4, pp. 335-348. doi: 10.4064/aa166-4-2
Cité par Sources :