Determination of a type of permutation trinomials
over finite fields
Acta Arithmetica, Tome 166 (2014) no. 3, pp. 253-278
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $f=a{\tt x} +b{\tt x}^q+{\tt x}^{2q-1}\in\Bbb F_q[{\tt x}]$. We find explicit conditions on $a$ and $b$ that are necessary and sufficient for $f$ to be a permutation polynomial of $\Bbb F_{q^2}$. This result allows us to solve a related problem: Let $g_{n,q}\in\Bbb F_p[{\tt x}]$ ($n\ge 0$,
$p={\rm char}\,\Bbb F_q$) be the polynomial defined by the functional equation $\sum_{c\in\Bbb F_q}({\tt x}+c)^n=g_{n,q}({\tt x}^q-{\tt x})$. We determine all $n$ of the form $n=q^\alpha-q^\beta-1$, $\alpha>\beta\ge 0$, for which $g_{n,q}$ is a permutation polynomial of $\Bbb F_{q^2}$.
Keywords:
q bbb explicit conditions necessary sufficient permutation polynomial bbb result allows solve related problem bbb char bbb polynomial defined functional equation sum bbb q determine form alpha q beta alpha beta which permutation polynomial bbb
Affiliations des auteurs :
Xiang-dong Hou 1
@article{10_4064_aa166_3_3,
author = {Xiang-dong Hou},
title = {Determination of a type of permutation trinomials
over finite fields},
journal = {Acta Arithmetica},
pages = {253--278},
publisher = {mathdoc},
volume = {166},
number = {3},
year = {2014},
doi = {10.4064/aa166-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-3-3/}
}
TY - JOUR AU - Xiang-dong Hou TI - Determination of a type of permutation trinomials over finite fields JO - Acta Arithmetica PY - 2014 SP - 253 EP - 278 VL - 166 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa166-3-3/ DO - 10.4064/aa166-3-3 LA - en ID - 10_4064_aa166_3_3 ER -
Xiang-dong Hou. Determination of a type of permutation trinomials over finite fields. Acta Arithmetica, Tome 166 (2014) no. 3, pp. 253-278. doi: 10.4064/aa166-3-3
Cité par Sources :