Horizontal monotonicity of the modulus of the zeta function, $L$-functions, and related functions
Acta Arithmetica, Tome 166 (2014) no. 2, pp. 189-200
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
As usual, let $s = \sigma + it$. For any fixed value of $t$ with $|t|
\geq 8$ and for $\sigma 0$, we show that $|\zeta(s)|$ is strictly
decreasing in $\sigma$, with the same result also holding for the
related functions $\xi$ of Riemann and $\eta$ of Euler. The
following inequality related to the monotonicity of all three
functions is proved:
$$
\Re\biggl(\frac {\eta'(s)}{\eta(s)} \biggr) \Re\biggl(\frac {\zeta'(s)}{\zeta(s)}\biggr)
\Re\biggl(\frac {\xi'(s)}{\xi(s)} \biggr).
$$
It is also shown that extending the above monotonicity result for
$|\zeta(s)|$, $|\xi(s)|,$ or $|\eta(s)| $ from $\sigma 0$ to $\sigma
1/2$ is equivalent to the Riemann hypothesis. Similar
monotonicity results will be established for all Dirichlet
$L$-functions $L(s,\chi)$, where $\chi$ is any primitive Dirichlet
character, as well as the corresponding $\xi(s,\chi)$ functions,
together with the relation of this to the generalized Riemann
hypothesis. Finally, these results will be interpreted in terms of
the degree $1$ elements of the Selberg class.
Keywords:
usual sigma fixed value geq sigma zeta strictly decreasing sigma result holding related functions riemann eta euler following inequality related monotonicity three functions proved biggl frac eta eta biggr biggl frac zeta zeta biggr biggl frac biggr shown extending above monotonicity result zeta eta sigma sigma equivalent riemann hypothesis similar monotonicity results established dirichlet l functions chi where chi primitive dirichlet character corresponding chi functions together relation generalized riemann hypothesis finally these results interpreted terms degree elements selberg class
Affiliations des auteurs :
Yu. Matiyasevich 1 ; F. Saidak 2 ; P. Zvengrowski 3
@article{10_4064_aa166_2_4,
author = {Yu. Matiyasevich and F. Saidak and P. Zvengrowski},
title = {Horizontal monotonicity of the modulus of the zeta function, $L$-functions, and related functions},
journal = {Acta Arithmetica},
pages = {189--200},
publisher = {mathdoc},
volume = {166},
number = {2},
year = {2014},
doi = {10.4064/aa166-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-2-4/}
}
TY - JOUR AU - Yu. Matiyasevich AU - F. Saidak AU - P. Zvengrowski TI - Horizontal monotonicity of the modulus of the zeta function, $L$-functions, and related functions JO - Acta Arithmetica PY - 2014 SP - 189 EP - 200 VL - 166 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa166-2-4/ DO - 10.4064/aa166-2-4 LA - en ID - 10_4064_aa166_2_4 ER -
%0 Journal Article %A Yu. Matiyasevich %A F. Saidak %A P. Zvengrowski %T Horizontal monotonicity of the modulus of the zeta function, $L$-functions, and related functions %J Acta Arithmetica %D 2014 %P 189-200 %V 166 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa166-2-4/ %R 10.4064/aa166-2-4 %G en %F 10_4064_aa166_2_4
Yu. Matiyasevich; F. Saidak; P. Zvengrowski. Horizontal monotonicity of the modulus of the zeta function, $L$-functions, and related functions. Acta Arithmetica, Tome 166 (2014) no. 2, pp. 189-200. doi: 10.4064/aa166-2-4
Cité par Sources :