On the average value of the canonical height in
higher dimensional families of elliptic curves
Acta Arithmetica, Tome 166 (2014) no. 2, pp. 101-128
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given an elliptic curve $E$ over a function field $K=\mathbb {Q}(T_1, \ldots , T_n)$, we study the behavior of the canonical height $\hat{h}_{E_\omega }$ of the specialized elliptic curve $E_\omega $ with respect to the height of $\omega \in \mathbb {Q}^n$. We prove that there exists a uniform nonzero lower bound for the average of the quotient ${\hat{h}_{E_\omega }(P_\omega )}/{h(\omega )}$ over all nontorsion $P \in E(K)$.
Keywords:
given elliptic curve function field mathbb ldots study behavior canonical height hat omega specialized elliptic curve omega respect height omega mathbb prove there exists uniform nonzero lower bound average quotient hat omega omega omega nontorsion
Affiliations des auteurs :
Wei Pin Wong 1
@article{10_4064_aa166_2_1,
author = {Wei Pin Wong},
title = {On the average value of the canonical height in
higher dimensional families of elliptic curves},
journal = {Acta Arithmetica},
pages = {101--128},
publisher = {mathdoc},
volume = {166},
number = {2},
year = {2014},
doi = {10.4064/aa166-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-2-1/}
}
TY - JOUR AU - Wei Pin Wong TI - On the average value of the canonical height in higher dimensional families of elliptic curves JO - Acta Arithmetica PY - 2014 SP - 101 EP - 128 VL - 166 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa166-2-1/ DO - 10.4064/aa166-2-1 LA - en ID - 10_4064_aa166_2_1 ER -
%0 Journal Article %A Wei Pin Wong %T On the average value of the canonical height in higher dimensional families of elliptic curves %J Acta Arithmetica %D 2014 %P 101-128 %V 166 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa166-2-1/ %R 10.4064/aa166-2-1 %G en %F 10_4064_aa166_2_1
Wei Pin Wong. On the average value of the canonical height in higher dimensional families of elliptic curves. Acta Arithmetica, Tome 166 (2014) no. 2, pp. 101-128. doi: 10.4064/aa166-2-1
Cité par Sources :