A generalization of a theorem of Erdős–Rényi to $m$-fold sums and differences
Acta Arithmetica, Tome 166 (2014) no. 1, pp. 55-67.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $m\geq 2$ be a positive integer. Given a set $E(\omega )\subseteq \mathbb {N}$ we define $r_{N}^{(m)}(\omega )$ to be the number of ways to represent $N\in \mathbb {Z}$ as a combination of sums and differences of $m$ distinct elements of $E(\omega )$. In this paper, we prove the existence of a “thick” set $E(\omega )$ and a positive constant $K$ such that $r_{N}^{(m)}(\omega ) K$ for all $N\in \mathbb {Z}$. This is a generalization of a known theorem by Erdős and Rényi. We also apply our results to harmonic analysis, where we prove the existence of certain thin sets.
DOI : 10.4064/aa166-1-5
Keywords: geq positive integer given set omega subseteq mathbb define omega number ways represent mathbb combination sums differences distinct elements omega paper prove existence thick set omega positive constant omega mathbb generalization known theorem erd nyi apply results harmonic analysis where prove existence certain thin sets

Kathryn E. Hare 1 ; Shuntaro Yamagishi 1

1 Department of Pure Mathematics University of Waterloo Waterloo, ON, Canada N2L 3G1
@article{10_4064_aa166_1_5,
     author = {Kathryn E. Hare and Shuntaro Yamagishi},
     title = {A generalization of a theorem of {Erd\H{o}s{\textendash}R\'enyi} to $m$-fold sums and differences},
     journal = {Acta Arithmetica},
     pages = {55--67},
     publisher = {mathdoc},
     volume = {166},
     number = {1},
     year = {2014},
     doi = {10.4064/aa166-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-5/}
}
TY  - JOUR
AU  - Kathryn E. Hare
AU  - Shuntaro Yamagishi
TI  - A generalization of a theorem of Erdős–Rényi to $m$-fold sums and differences
JO  - Acta Arithmetica
PY  - 2014
SP  - 55
EP  - 67
VL  - 166
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-5/
DO  - 10.4064/aa166-1-5
LA  - en
ID  - 10_4064_aa166_1_5
ER  - 
%0 Journal Article
%A Kathryn E. Hare
%A Shuntaro Yamagishi
%T A generalization of a theorem of Erdős–Rényi to $m$-fold sums and differences
%J Acta Arithmetica
%D 2014
%P 55-67
%V 166
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-5/
%R 10.4064/aa166-1-5
%G en
%F 10_4064_aa166_1_5
Kathryn E. Hare; Shuntaro Yamagishi. A generalization of a theorem of Erdős–Rényi to $m$-fold sums and differences. Acta Arithmetica, Tome 166 (2014) no. 1, pp. 55-67. doi : 10.4064/aa166-1-5. http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-5/

Cité par Sources :