A generalization of a theorem of Erdős–Rényi to $m$-fold sums and differences
Acta Arithmetica, Tome 166 (2014) no. 1, pp. 55-67
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $m\geq 2$ be a positive integer. Given a set $E(\omega )\subseteq \mathbb {N}$ we define $r_{N}^{(m)}(\omega )$
to be the number of ways to represent $N\in \mathbb {Z}$ as a combination of sums and differences of $m$ distinct
elements of $E(\omega )$. In this paper, we prove the existence of a “thick” set $E(\omega )$ and a positive constant $K$
such that $r_{N}^{(m)}(\omega ) K$ for all $N\in \mathbb {Z}$. This is a generalization of a known theorem by Erdős and Rényi. We also apply our results to harmonic analysis, where we prove the existence of certain thin sets.
Keywords:
geq positive integer given set omega subseteq mathbb define omega number ways represent mathbb combination sums differences distinct elements omega paper prove existence thick set omega positive constant omega mathbb generalization known theorem erd nyi apply results harmonic analysis where prove existence certain thin sets
Affiliations des auteurs :
Kathryn E. Hare 1 ; Shuntaro Yamagishi 1
@article{10_4064_aa166_1_5,
author = {Kathryn E. Hare and Shuntaro Yamagishi},
title = {A generalization of a theorem of {Erd\H{o}s{\textendash}R\'enyi} to $m$-fold sums and differences},
journal = {Acta Arithmetica},
pages = {55--67},
publisher = {mathdoc},
volume = {166},
number = {1},
year = {2014},
doi = {10.4064/aa166-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-5/}
}
TY - JOUR AU - Kathryn E. Hare AU - Shuntaro Yamagishi TI - A generalization of a theorem of Erdős–Rényi to $m$-fold sums and differences JO - Acta Arithmetica PY - 2014 SP - 55 EP - 67 VL - 166 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-5/ DO - 10.4064/aa166-1-5 LA - en ID - 10_4064_aa166_1_5 ER -
%0 Journal Article %A Kathryn E. Hare %A Shuntaro Yamagishi %T A generalization of a theorem of Erdős–Rényi to $m$-fold sums and differences %J Acta Arithmetica %D 2014 %P 55-67 %V 166 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-5/ %R 10.4064/aa166-1-5 %G en %F 10_4064_aa166_1_5
Kathryn E. Hare; Shuntaro Yamagishi. A generalization of a theorem of Erdős–Rényi to $m$-fold sums and differences. Acta Arithmetica, Tome 166 (2014) no. 1, pp. 55-67. doi: 10.4064/aa166-1-5
Cité par Sources :