On the mean value of a kind of zeta functions
Acta Arithmetica, Tome 166 (2014) no. 1, pp. 33-54
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $d_{\alpha ,\beta }(n)=\sum _{ n=kl,\,\alpha l k\leq \beta l}1$ be the number of ways of factoring $n$ into two almost equal integers. For fixed rational numbers $\alpha >0$ and $\beta >0$, we consider a zeta function of the type $\zeta _{\alpha ,\beta }(s)=\sum _{n=1}^{\infty }{d_{\alpha ,\beta }(n)}/{n^{s}}$ for $\Re s>1.$ It has an analytic continuation to $\Re s>1/3.$ We get an asymptotic formula for the mean square of $\zeta _{\alpha ,\beta }(s)$ in the strip $1/2\Re s1$. As an application, we improve a result on the distribution of primitive Pythagorean triangles.
Keywords:
alpha beta sum alpha leq beta number ways factoring almost equal integers fixed rational numbers alpha beta consider zeta function type zeta alpha beta sum infty alpha beta has analytic continuation get asymptotic formula mean square zeta alpha beta strip application improve result distribution primitive pythagorean triangles
Affiliations des auteurs :
Kui Liu 1
@article{10_4064_aa166_1_4,
author = {Kui Liu},
title = {On the mean value of a kind of zeta functions},
journal = {Acta Arithmetica},
pages = {33--54},
publisher = {mathdoc},
volume = {166},
number = {1},
year = {2014},
doi = {10.4064/aa166-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-4/}
}
Kui Liu. On the mean value of a kind of zeta functions. Acta Arithmetica, Tome 166 (2014) no. 1, pp. 33-54. doi: 10.4064/aa166-1-4
Cité par Sources :