On canonical subfield preserving polynomials
Acta Arithmetica, Tome 166 (2014) no. 1, pp. 23-32.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Explicit monoid structure is provided for the class of canonical subfield preserving polynomials over finite fields. Some classical results and asymptotic estimates will follow as corollaries.
DOI : 10.4064/aa166-1-3
Keywords: explicit monoid structure provided class canonical subfield preserving polynomials finite fields classical results asymptotic estimates follow corollaries

Giacomo Micheli 1 ; Davide Schipani 1

1 Institute of Mathematics University of Zurich Winterthurerstrasse 190 8057 Zürich, Switzerland
@article{10_4064_aa166_1_3,
     author = {Giacomo Micheli and Davide Schipani},
     title = {On canonical subfield preserving polynomials},
     journal = {Acta Arithmetica},
     pages = {23--32},
     publisher = {mathdoc},
     volume = {166},
     number = {1},
     year = {2014},
     doi = {10.4064/aa166-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-3/}
}
TY  - JOUR
AU  - Giacomo Micheli
AU  - Davide Schipani
TI  - On canonical subfield preserving polynomials
JO  - Acta Arithmetica
PY  - 2014
SP  - 23
EP  - 32
VL  - 166
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-3/
DO  - 10.4064/aa166-1-3
LA  - en
ID  - 10_4064_aa166_1_3
ER  - 
%0 Journal Article
%A Giacomo Micheli
%A Davide Schipani
%T On canonical subfield preserving polynomials
%J Acta Arithmetica
%D 2014
%P 23-32
%V 166
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-3/
%R 10.4064/aa166-1-3
%G en
%F 10_4064_aa166_1_3
Giacomo Micheli; Davide Schipani. On canonical subfield preserving polynomials. Acta Arithmetica, Tome 166 (2014) no. 1, pp. 23-32. doi : 10.4064/aa166-1-3. http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-3/

Cité par Sources :