Uniformly counting rational points on conics
Acta Arithmetica, Tome 166 (2014) no. 1, pp. 1-13
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We provide an asymptotic estimate for the number of rational points of bounded height on a non-singular conic over $\mathbb {Q}$. The estimate is uniform in the coefficients of the underlying quadratic form.
Keywords:
provide asymptotic estimate number rational points bounded height non singular conic mathbb estimate uniform coefficients underlying quadratic form
Affiliations des auteurs :
Efthymios Sofos 1
@article{10_4064_aa166_1_1,
author = {Efthymios Sofos},
title = {Uniformly counting rational points on conics},
journal = {Acta Arithmetica},
pages = {1--13},
publisher = {mathdoc},
volume = {166},
number = {1},
year = {2014},
doi = {10.4064/aa166-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-1/}
}
Efthymios Sofos. Uniformly counting rational points on conics. Acta Arithmetica, Tome 166 (2014) no. 1, pp. 1-13. doi: 10.4064/aa166-1-1
Cité par Sources :