Greatest prime divisors of polynomial values
over function fields
Acta Arithmetica, Tome 165 (2014) no. 4, pp. 339-349
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For a function field $K$ and fixed polynomial $F\in K[x]$ and varying $f\in F$ (under certain restrictions) we give a lower bound for the degree of the greatest prime divisor of $F(f)$ in terms of the height of $f$, establishing a strong result for the function field analogue of a classical problem in number theory.
Keywords:
function field fixed polynomial varying under certain restrictions lower bound degree greatest prime divisor terms height establishing strong result function field analogue classical problem number theory
Affiliations des auteurs :
Alexei Entin 1
@article{10_4064_aa165_4_4,
author = {Alexei Entin},
title = {Greatest prime divisors of polynomial values
over function fields},
journal = {Acta Arithmetica},
pages = {339--349},
year = {2014},
volume = {165},
number = {4},
doi = {10.4064/aa165-4-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa165-4-4/}
}
Alexei Entin. Greatest prime divisors of polynomial values over function fields. Acta Arithmetica, Tome 165 (2014) no. 4, pp. 339-349. doi: 10.4064/aa165-4-4
Cité par Sources :