Greatest prime divisors of polynomial values over function fields
Acta Arithmetica, Tome 165 (2014) no. 4, pp. 339-349.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a function field $K$ and fixed polynomial $F\in K[x]$ and varying $f\in F$ (under certain restrictions) we give a lower bound for the degree of the greatest prime divisor of $F(f)$ in terms of the height of $f$, establishing a strong result for the function field analogue of a classical problem in number theory.
DOI : 10.4064/aa165-4-4
Keywords: function field fixed polynomial varying under certain restrictions lower bound degree greatest prime divisor terms height establishing strong result function field analogue classical problem number theory

Alexei Entin 1

1 Raymond and Beverly Sackler School of Mathematical Sciences Tel Aviv University Tel Aviv 69978, Israel
@article{10_4064_aa165_4_4,
     author = {Alexei Entin},
     title = {Greatest prime divisors of polynomial values
 over function fields},
     journal = {Acta Arithmetica},
     pages = {339--349},
     publisher = {mathdoc},
     volume = {165},
     number = {4},
     year = {2014},
     doi = {10.4064/aa165-4-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa165-4-4/}
}
TY  - JOUR
AU  - Alexei Entin
TI  - Greatest prime divisors of polynomial values
 over function fields
JO  - Acta Arithmetica
PY  - 2014
SP  - 339
EP  - 349
VL  - 165
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa165-4-4/
DO  - 10.4064/aa165-4-4
LA  - en
ID  - 10_4064_aa165_4_4
ER  - 
%0 Journal Article
%A Alexei Entin
%T Greatest prime divisors of polynomial values
 over function fields
%J Acta Arithmetica
%D 2014
%P 339-349
%V 165
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa165-4-4/
%R 10.4064/aa165-4-4
%G en
%F 10_4064_aa165_4_4
Alexei Entin. Greatest prime divisors of polynomial values
 over function fields. Acta Arithmetica, Tome 165 (2014) no. 4, pp. 339-349. doi : 10.4064/aa165-4-4. http://geodesic.mathdoc.fr/articles/10.4064/aa165-4-4/

Cité par Sources :