On the convergence to $0$ of $m_n \xi\, {\rm mod}\,1$
Acta Arithmetica, Tome 165 (2014) no. 4, pp. 327-332.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that for any irrational number $\alpha$ and a sequence $\{m_l\}_{l\in \mathbb N}$ of integers such that $\lim_{l\to \infty} |\!|\!|m_l \alpha |\!|\!| = 0$, there exists a continuous measure $\mu$ on the circle such that $ \lim_{l\to \infty} \int_{\mathbb T} |\!|\!|m_l \theta |\!|\!| \,d\mu(\theta) = 0. $ This implies that any rigidity sequence of any ergodic transformation is a rigidity sequence for some weakly mixing dynamical system.On the other hand, we show that for any $\alpha \in \mathbb R - \mathbb Q$, there exists a sequence $\{m_l\}_{l\in \mathbb N}$ of integers such that $|\!|\!|m_l \alpha|\!|\!|\to 0$ and such that $m_l \theta [1]$ is dense on the circle if and only if $\theta \notin \mathbb Q \alpha+\mathbb Q$.
DOI : 10.4064/aa165-4-2
Keywords: irrational number alpha sequence mathbb integers lim infty alpha there exists continuous measure circle lim infty int mathbb theta theta implies rigidity sequence ergodic transformation rigidity sequence weakly mixing dynamical system other alpha mathbb mathbb there exists sequence mathbb integers alpha theta dense circle only theta notin mathbb alpha mathbb

Bassam Fayad 1 ; Jean-Paul Thouvenot 2

1 IMJ-PRG, CNRS UMR 7586 UP7D–Campus Grand Moulin Bâtiment Sophie Germain, Case 7012 75205 Paris Cedex 13, France
2 LPMA Université Pierre et Marie Curie 4 pl. Jussieu 75252 Paris, France
@article{10_4064_aa165_4_2,
     author = {Bassam Fayad and Jean-Paul Thouvenot},
     title = {On the convergence to $0$ of $m_n \xi\, {\rm mod}\,1$},
     journal = {Acta Arithmetica},
     pages = {327--332},
     publisher = {mathdoc},
     volume = {165},
     number = {4},
     year = {2014},
     doi = {10.4064/aa165-4-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa165-4-2/}
}
TY  - JOUR
AU  - Bassam Fayad
AU  - Jean-Paul Thouvenot
TI  - On the convergence to $0$ of $m_n \xi\, {\rm mod}\,1$
JO  - Acta Arithmetica
PY  - 2014
SP  - 327
EP  - 332
VL  - 165
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa165-4-2/
DO  - 10.4064/aa165-4-2
LA  - en
ID  - 10_4064_aa165_4_2
ER  - 
%0 Journal Article
%A Bassam Fayad
%A Jean-Paul Thouvenot
%T On the convergence to $0$ of $m_n \xi\, {\rm mod}\,1$
%J Acta Arithmetica
%D 2014
%P 327-332
%V 165
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa165-4-2/
%R 10.4064/aa165-4-2
%G en
%F 10_4064_aa165_4_2
Bassam Fayad; Jean-Paul Thouvenot. On the convergence to $0$ of $m_n \xi\, {\rm mod}\,1$. Acta Arithmetica, Tome 165 (2014) no. 4, pp. 327-332. doi : 10.4064/aa165-4-2. http://geodesic.mathdoc.fr/articles/10.4064/aa165-4-2/

Cité par Sources :