A criterion for potentially good reduction in nonarchimedean dynamics
Acta Arithmetica, Tome 165 (2014) no. 3, pp. 251-256
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $K$ be a nonarchimedean field, and let $\phi \in K(z)$ be a polynomial or rational function of degree at least $2$. We present a necessary and sufficient condition, involving only the fixed points of $\phi $ and their preimages, that determines whether or not the dynamical system $\phi :\mathbb {P}^1\to \mathbb {P}^1$ has potentially good reduction.
Keywords:
nonarchimedean field phi polynomial rational function degree least present necessary sufficient condition involving only fixed points phi their preimages determines whether dynamical system phi mathbb mathbb has potentially reduction
Affiliations des auteurs :
Robert L. Benedetto 1
@article{10_4064_aa165_3_4,
author = {Robert L. Benedetto},
title = {A criterion for potentially good reduction in nonarchimedean dynamics},
journal = {Acta Arithmetica},
pages = {251--256},
publisher = {mathdoc},
volume = {165},
number = {3},
year = {2014},
doi = {10.4064/aa165-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa165-3-4/}
}
TY - JOUR AU - Robert L. Benedetto TI - A criterion for potentially good reduction in nonarchimedean dynamics JO - Acta Arithmetica PY - 2014 SP - 251 EP - 256 VL - 165 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa165-3-4/ DO - 10.4064/aa165-3-4 LA - en ID - 10_4064_aa165_3_4 ER -
Robert L. Benedetto. A criterion for potentially good reduction in nonarchimedean dynamics. Acta Arithmetica, Tome 165 (2014) no. 3, pp. 251-256. doi: 10.4064/aa165-3-4
Cité par Sources :