A criterion for potentially good reduction in nonarchimedean dynamics
Acta Arithmetica, Tome 165 (2014) no. 3, pp. 251-256
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $K$ be a nonarchimedean field, and let $\phi \in K(z)$ be a polynomial or rational function of degree at least $2$. We present a necessary and sufficient condition, involving only the fixed points of $\phi $ and their preimages, that determines whether or not the dynamical system $\phi :\mathbb {P}^1\to \mathbb {P}^1$ has potentially good reduction.
Keywords:
nonarchimedean field phi polynomial rational function degree least present necessary sufficient condition involving only fixed points phi their preimages determines whether dynamical system phi mathbb mathbb has potentially reduction
Affiliations des auteurs :
Robert L. Benedetto  1
@article{10_4064_aa165_3_4,
author = {Robert L. Benedetto},
title = {A criterion for potentially good reduction in nonarchimedean dynamics},
journal = {Acta Arithmetica},
pages = {251--256},
year = {2014},
volume = {165},
number = {3},
doi = {10.4064/aa165-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa165-3-4/}
}
Robert L. Benedetto. A criterion for potentially good reduction in nonarchimedean dynamics. Acta Arithmetica, Tome 165 (2014) no. 3, pp. 251-256. doi: 10.4064/aa165-3-4
Cité par Sources :