Sparsity of the intersection of polynomial images
of an interval
Acta Arithmetica, Tome 165 (2014) no. 3, pp. 243-249
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the intersection of the images of two polynomial maps on a given interval is sparse. More precisely, we prove the following. Let $f(x), g(x)\in \mathbb F_{p}[x]$ be polynomials of degrees $d$ and $e$ with $d\ge e\ge 2$. Suppose $M\in \mathbb Z$ satisfies $$ p^{\frac 1E(1+\frac {\kappa }{1-\kappa })}>M>p^{\varepsilon }, $$ where $E=e(e+1)/2$ and $\kappa =(\frac 1d-\frac 1{d^2})\frac {E-1}{E}+\varepsilon $. Assume $f(x)-g(y)$ is absolutely irreducible.Then $$|f([0,M])\cap g([0, M])|\lesssim M^{1-\varepsilon }.$$
Keywords:
intersection images polynomial maps given interval sparse precisely prove following mathbb polynomials degrees suppose mathbb satisfies frac frac kappa kappa varepsilon where kappa frac d frac frac e varepsilon assume g absolutely irreducible cap lesssim varepsilon
Affiliations des auteurs :
Mei-Chu Chang 1
@article{10_4064_aa165_3_3,
author = {Mei-Chu Chang},
title = {Sparsity of the intersection of polynomial images
of an interval},
journal = {Acta Arithmetica},
pages = {243--249},
publisher = {mathdoc},
volume = {165},
number = {3},
year = {2014},
doi = {10.4064/aa165-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa165-3-3/}
}
Mei-Chu Chang. Sparsity of the intersection of polynomial images of an interval. Acta Arithmetica, Tome 165 (2014) no. 3, pp. 243-249. doi: 10.4064/aa165-3-3
Cité par Sources :