Sparsity of the intersection of polynomial images of an interval
Acta Arithmetica, Tome 165 (2014) no. 3, pp. 243-249.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the intersection of the images of two polynomial maps on a given interval is sparse. More precisely, we prove the following. Let $f(x), g(x)\in \mathbb F_{p}[x]$ be polynomials of degrees $d$ and $e$ with $d\ge e\ge 2$. Suppose $M\in \mathbb Z$ satisfies $$ p^{\frac 1E(1+\frac {\kappa }{1-\kappa })}>M>p^{\varepsilon }, $$ where $E=e(e+1)/2$ and $\kappa =(\frac 1d-\frac 1{d^2})\frac {E-1}{E}+\varepsilon $. Assume $f(x)-g(y)$ is absolutely irreducible.Then $$|f([0,M])\cap g([0, M])|\lesssim M^{1-\varepsilon }.$$
DOI : 10.4064/aa165-3-3
Keywords: intersection images polynomial maps given interval sparse precisely prove following mathbb polynomials degrees suppose mathbb satisfies frac frac kappa kappa varepsilon where kappa frac d frac frac e varepsilon assume g absolutely irreducible cap lesssim varepsilon

Mei-Chu Chang 1

1 Department of Mathematics University of California Riverside, CA 92521, U.S.A.
@article{10_4064_aa165_3_3,
     author = {Mei-Chu Chang},
     title = {Sparsity of the intersection of polynomial images
 of an interval},
     journal = {Acta Arithmetica},
     pages = {243--249},
     publisher = {mathdoc},
     volume = {165},
     number = {3},
     year = {2014},
     doi = {10.4064/aa165-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa165-3-3/}
}
TY  - JOUR
AU  - Mei-Chu Chang
TI  - Sparsity of the intersection of polynomial images
 of an interval
JO  - Acta Arithmetica
PY  - 2014
SP  - 243
EP  - 249
VL  - 165
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa165-3-3/
DO  - 10.4064/aa165-3-3
LA  - en
ID  - 10_4064_aa165_3_3
ER  - 
%0 Journal Article
%A Mei-Chu Chang
%T Sparsity of the intersection of polynomial images
 of an interval
%J Acta Arithmetica
%D 2014
%P 243-249
%V 165
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa165-3-3/
%R 10.4064/aa165-3-3
%G en
%F 10_4064_aa165_3_3
Mei-Chu Chang. Sparsity of the intersection of polynomial images
 of an interval. Acta Arithmetica, Tome 165 (2014) no. 3, pp. 243-249. doi : 10.4064/aa165-3-3. http://geodesic.mathdoc.fr/articles/10.4064/aa165-3-3/

Cité par Sources :