On the ordinarity of the maximal real subfield
of cyclotomic function fields
Acta Arithmetica, Tome 165 (2014) no. 3, pp. 225-242
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The aim of this paper is to clarify the ordinarity of cyclotomic function fields. In the previous work [J. Number Theory 133 (2013)], the author determined all monic irreducible polynomials $m$ such that the maximal real subfield of the $m$th cyclotomic function field is ordinary. In this paper, we extend this result to the general case.
Keywords:
paper clarify ordinarity cyclotomic function fields previous work number theory author determined monic irreducible polynomials maximal real subfield mth cyclotomic function field ordinary paper extend result general
Affiliations des auteurs :
Daisuke Shiomi  1
@article{10_4064_aa165_3_2,
author = {Daisuke Shiomi},
title = {On the ordinarity of the maximal real subfield
of cyclotomic function fields},
journal = {Acta Arithmetica},
pages = {225--242},
year = {2014},
volume = {165},
number = {3},
doi = {10.4064/aa165-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa165-3-2/}
}
Daisuke Shiomi. On the ordinarity of the maximal real subfield of cyclotomic function fields. Acta Arithmetica, Tome 165 (2014) no. 3, pp. 225-242. doi: 10.4064/aa165-3-2
Cité par Sources :