On the ordinarity of the maximal real subfield
of cyclotomic function fields
Acta Arithmetica, Tome 165 (2014) no. 3, pp. 225-242
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The aim of this paper is to clarify the ordinarity of cyclotomic function fields. In the previous work [J. Number Theory 133 (2013)], the author determined all monic irreducible polynomials $m$ such that the maximal real subfield of the $m$th cyclotomic function field is ordinary. In this paper, we extend this result to the general case.
Keywords:
paper clarify ordinarity cyclotomic function fields previous work number theory author determined monic irreducible polynomials maximal real subfield mth cyclotomic function field ordinary paper extend result general
Affiliations des auteurs :
Daisuke Shiomi 1
@article{10_4064_aa165_3_2,
author = {Daisuke Shiomi},
title = {On the ordinarity of the maximal real subfield
of cyclotomic function fields},
journal = {Acta Arithmetica},
pages = {225--242},
publisher = {mathdoc},
volume = {165},
number = {3},
year = {2014},
doi = {10.4064/aa165-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa165-3-2/}
}
TY - JOUR AU - Daisuke Shiomi TI - On the ordinarity of the maximal real subfield of cyclotomic function fields JO - Acta Arithmetica PY - 2014 SP - 225 EP - 242 VL - 165 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa165-3-2/ DO - 10.4064/aa165-3-2 LA - en ID - 10_4064_aa165_3_2 ER -
Daisuke Shiomi. On the ordinarity of the maximal real subfield of cyclotomic function fields. Acta Arithmetica, Tome 165 (2014) no. 3, pp. 225-242. doi: 10.4064/aa165-3-2
Cité par Sources :