Descent via $(3,3)$-isogeny on Jacobians of
genus 2 curves
Acta Arithmetica, Tome 165 (2014) no. 3, pp. 201-223
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give a parametrization of curves\nonbreakingspace $C$ of genus 2 with a maximal isotropic $({\mathbb Z}/3)^2$ in $J[3]$, where $J$ is the Jacobian variety of\nonbreakingspace $C$, and develop the theory required to perform descent via $(3,3)$-isogeny. We apply this to several examples, where it is shown that non-reducible Jacobians have non-trivial $3$-part of the Tate–Shafarevich group.
Keywords:
parametrization curves nonbreakingspace genus maximal isotropic mathbb where jacobian variety nonbreakingspace develop theory required perform descent via isogeny apply several examples where shown non reducible jacobians have non trivial part tate shafarevich group
Affiliations des auteurs :
Nils Bruin 1 ; E. Victor Flynn 2 ; Damiano Testa 3
@article{10_4064_aa165_3_1,
author = {Nils Bruin and E. Victor Flynn and Damiano Testa},
title = {Descent via $(3,3)$-isogeny on {Jacobians} of
genus 2 curves},
journal = {Acta Arithmetica},
pages = {201--223},
year = {2014},
volume = {165},
number = {3},
doi = {10.4064/aa165-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa165-3-1/}
}
TY - JOUR AU - Nils Bruin AU - E. Victor Flynn AU - Damiano Testa TI - Descent via $(3,3)$-isogeny on Jacobians of genus 2 curves JO - Acta Arithmetica PY - 2014 SP - 201 EP - 223 VL - 165 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa165-3-1/ DO - 10.4064/aa165-3-1 LA - en ID - 10_4064_aa165_3_1 ER -
Nils Bruin; E. Victor Flynn; Damiano Testa. Descent via $(3,3)$-isogeny on Jacobians of genus 2 curves. Acta Arithmetica, Tome 165 (2014) no. 3, pp. 201-223. doi: 10.4064/aa165-3-1
Cité par Sources :