On the value set of small families of polynomials over a finite field, II
Acta Arithmetica, Tome 165 (2014) no. 2, pp. 141-179.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We obtain an estimate on the average cardinality $\mathcal{V}(d,s,\boldsymbol{a})$ of the value set of any family of monic polynomials in $\mathbb F_q[T]$ of degree $d$ for which $s$ consecutive coefficients $\boldsymbol{a} = (a_{d-1},\dots, a_{d-s})$ are fixed. Our estimate asserts that $\mathcal{V}(d,s,\boldsymbol{a})=\mu_d q+\mathcal{O}(q^{{1}/{2}})$, where $\mu_d:=\sum_{r=1}^d{(-1)^{r-1}}/{r!}$. We also prove that $\mathcal{V}_2(d,s,\boldsymbol{a})=\mu_d^2 q^2+\mathcal{O}(q^{{3}/{2}})$, where $\mathcal{V}_2(d,s,\boldsymbol{a})$ is the average second moment of the value set cardinalities for any family of monic polynomials of $\mathbb F_q[T]$ of degree $d$ with $s$ consecutive coefficients fixed as above. Finally, we show that $\mathcal{V}_2(d,0)=\mu_d^2 q^2+\mathcal{O}(q)$, where $\mathcal{V}_2(d,0)$ denotes the average second moment for all monic polynomials in $\mathbb F_q[T]$ of degree $d$ with $f(0)=0$. All our estimates hold for fields of characteristic $p>2$ and provide explicit upper bounds for the $\mathcal{O}$-constants in terms of $d$ and $s$ with “good” behavior. Our approach reduces the questions to estimating the number of $\mathbb F_q$-rational points with pairwise distinct coordinates of a certain family of complete intersections defined over $\mathbb F_q$. Critical to our results is the analysis of the singular locus of the varieties under consideration, which allows us obtain rather precise estimates on the corresponding number of $\mathbb F_q$-rational points.
DOI : 10.4064/aa165-2-3
Keywords: obtain estimate average cardinality mathcal boldsymbol value set family monic polynomials mathbb degree which consecutive coefficients boldsymbol d dots d s fixed estimate asserts mathcal boldsymbol mathcal where sum r prove mathcal boldsymbol mathcal where mathcal boldsymbol average second moment value set cardinalities family monic polynomials mathbb degree consecutive coefficients fixed above finally mathcal mathcal where mathcal denotes average second moment monic polynomials mathbb degree estimates fields characteristic provide explicit upper bounds mathcal constants terms behavior approach reduces questions estimating number mathbb q rational points pairwise distinct coordinates certain family complete intersections defined mathbb critical results analysis singular locus varieties under consideration which allows obtain rather precise estimates corresponding number mathbb q rational points

Guillermo Matera 1 ; Mariana Pérez 2 ; Melina Privitelli 3

1 Instituto del Desarrollo Humano Universidad Nacional de General Sarmiento J. M. Gutiérrez 1150 (B1613GSX) Los Polvorines Buenos Aires, Argentina and National Council of Science and Technology (CONICET), Argentina
2 Instituto del Desarrollo Humano Universidad Nacional de General Sarmiento J. M. Gutiérrez 1150 (B1613GSX) Los Polvorines Buenos Aires, Argentina
3 Instituto de Ciencias Universidad Nacional de General Sarmiento J. M. Gutiérrez 1150 (B1613GSX) Los Polvorines Buenos Aires, Argentina and National Council of Science and Technology (CONICET), Argentina
@article{10_4064_aa165_2_3,
     author = {Guillermo Matera and Mariana P\'erez and Melina Privitelli},
     title = {On the value set of small families of
 polynomials over a finite field, {II}},
     journal = {Acta Arithmetica},
     pages = {141--179},
     publisher = {mathdoc},
     volume = {165},
     number = {2},
     year = {2014},
     doi = {10.4064/aa165-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa165-2-3/}
}
TY  - JOUR
AU  - Guillermo Matera
AU  - Mariana Pérez
AU  - Melina Privitelli
TI  - On the value set of small families of
 polynomials over a finite field, II
JO  - Acta Arithmetica
PY  - 2014
SP  - 141
EP  - 179
VL  - 165
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa165-2-3/
DO  - 10.4064/aa165-2-3
LA  - en
ID  - 10_4064_aa165_2_3
ER  - 
%0 Journal Article
%A Guillermo Matera
%A Mariana Pérez
%A Melina Privitelli
%T On the value set of small families of
 polynomials over a finite field, II
%J Acta Arithmetica
%D 2014
%P 141-179
%V 165
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa165-2-3/
%R 10.4064/aa165-2-3
%G en
%F 10_4064_aa165_2_3
Guillermo Matera; Mariana Pérez; Melina Privitelli. On the value set of small families of
 polynomials over a finite field, II. Acta Arithmetica, Tome 165 (2014) no. 2, pp. 141-179. doi : 10.4064/aa165-2-3. http://geodesic.mathdoc.fr/articles/10.4064/aa165-2-3/

Cité par Sources :