On the value set of small families of
polynomials over a finite field, II
Acta Arithmetica, Tome 165 (2014) no. 2, pp. 141-179
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We obtain an estimate on the average cardinality $\mathcal{V}(d,s,\boldsymbol{a})$
of the value set of
any family of monic polynomials in $\mathbb F_q[T]$ of degree $d$ for which
$s$ consecutive coefficients $\boldsymbol{a} = (a_{d-1},\dots, a_{d-s})$ are fixed.
Our
estimate asserts that
$\mathcal{V}(d,s,\boldsymbol{a})=\mu_d q+\mathcal{O}(q^{{1}/{2}})$,
where $\mu_d:=\sum_{r=1}^d{(-1)^{r-1}}/{r!}$.
We also prove that
$\mathcal{V}_2(d,s,\boldsymbol{a})=\mu_d^2 q^2+\mathcal{O}(q^{{3}/{2}})$,
where $\mathcal{V}_2(d,s,\boldsymbol{a})$ is the average second moment of
the value set cardinalities for
any family of monic polynomials of $\mathbb F_q[T]$ of degree $d$ with $s$
consecutive coefficients fixed as above. Finally, we show that
$\mathcal{V}_2(d,0)=\mu_d^2 q^2+\mathcal{O}(q)$, where
$\mathcal{V}_2(d,0)$ denotes the average second moment for all monic
polynomials in $\mathbb F_q[T]$ of degree $d$ with $f(0)=0$. All our
estimates hold for fields of characteristic $p>2$ and provide
explicit upper bounds for the
$\mathcal{O}$-constants in terms of $d$ and $s$ with “good”
behavior. Our approach reduces the questions to estimating the number
of $\mathbb F_q$-rational points with pairwise distinct coordinates of a
certain family of complete intersections defined over $\mathbb F_q$.
Critical to our results is the analysis of the singular
locus of the varieties under consideration, which allows us obtain
rather precise estimates on the corresponding number of
$\mathbb F_q$-rational points.
Keywords:
obtain estimate average cardinality mathcal boldsymbol value set family monic polynomials mathbb degree which consecutive coefficients boldsymbol d dots d s fixed estimate asserts mathcal boldsymbol mathcal where sum r prove mathcal boldsymbol mathcal where mathcal boldsymbol average second moment value set cardinalities family monic polynomials mathbb degree consecutive coefficients fixed above finally mathcal mathcal where mathcal denotes average second moment monic polynomials mathbb degree estimates fields characteristic provide explicit upper bounds mathcal constants terms behavior approach reduces questions estimating number mathbb q rational points pairwise distinct coordinates certain family complete intersections defined mathbb critical results analysis singular locus varieties under consideration which allows obtain rather precise estimates corresponding number mathbb q rational points
Affiliations des auteurs :
Guillermo Matera 1 ; Mariana Pérez 2 ; Melina Privitelli 3
@article{10_4064_aa165_2_3,
author = {Guillermo Matera and Mariana P\'erez and Melina Privitelli},
title = {On the value set of small families of
polynomials over a finite field, {II}},
journal = {Acta Arithmetica},
pages = {141--179},
year = {2014},
volume = {165},
number = {2},
doi = {10.4064/aa165-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa165-2-3/}
}
TY - JOUR AU - Guillermo Matera AU - Mariana Pérez AU - Melina Privitelli TI - On the value set of small families of polynomials over a finite field, II JO - Acta Arithmetica PY - 2014 SP - 141 EP - 179 VL - 165 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa165-2-3/ DO - 10.4064/aa165-2-3 LA - en ID - 10_4064_aa165_2_3 ER -
%0 Journal Article %A Guillermo Matera %A Mariana Pérez %A Melina Privitelli %T On the value set of small families of polynomials over a finite field, II %J Acta Arithmetica %D 2014 %P 141-179 %V 165 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/aa165-2-3/ %R 10.4064/aa165-2-3 %G en %F 10_4064_aa165_2_3
Guillermo Matera; Mariana Pérez; Melina Privitelli. On the value set of small families of polynomials over a finite field, II. Acta Arithmetica, Tome 165 (2014) no. 2, pp. 141-179. doi: 10.4064/aa165-2-3
Cité par Sources :