Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions
Acta Arithmetica, Tome 165 (2014) no. 1, pp. 1-10
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that
$|\!\sum_{d\le x,\, (d,q)=1}\mu(d)/d|\le 2.4(q/\varphi(q))/\!\log
(x/q)$ for every $x>q\ge1$, and similar estimates for the Liouville
function. We also give better constants when $x/q$ is large.,
Keywords:
prove sum varphi log every similar estimates liouville function better constants large
Affiliations des auteurs :
Olivier Ramaré 1
@article{10_4064_aa165_1_1,
author = {Olivier Ramar\'e},
title = {Explicit estimates on the summatory functions of the {M\"obius} function with coprimality restrictions},
journal = {Acta Arithmetica},
pages = {1--10},
publisher = {mathdoc},
volume = {165},
number = {1},
year = {2014},
doi = {10.4064/aa165-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa165-1-1/}
}
TY - JOUR AU - Olivier Ramaré TI - Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions JO - Acta Arithmetica PY - 2014 SP - 1 EP - 10 VL - 165 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa165-1-1/ DO - 10.4064/aa165-1-1 LA - en ID - 10_4064_aa165_1_1 ER -
%0 Journal Article %A Olivier Ramaré %T Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions %J Acta Arithmetica %D 2014 %P 1-10 %V 165 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa165-1-1/ %R 10.4064/aa165-1-1 %G en %F 10_4064_aa165_1_1
Olivier Ramaré. Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions. Acta Arithmetica, Tome 165 (2014) no. 1, pp. 1-10. doi: 10.4064/aa165-1-1
Cité par Sources :