Computations of Galois representations
associated to modular forms of level one
Acta Arithmetica, Tome 164 (2014) no. 4, pp. 399-411
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We propose an improved algorithm for computing mod $\ell $ Galois representations associated to a cusp form $f$ of level one. The proposed method allows us to explicitly compute the case with $\ell =29$ and $f$ of weight $k=16$, and the cases with $\ell =31$ and $f$ of weight $k=12,20, 22$. All the results are rigorously proved to be correct. As an example, we will compute the values modulo $31$ of Ramanujan's tau function at some huge primes up to a sign. Also we will give an improved uper bound on Lehmer's conjecture for Ramanujan's tau function.
Keywords:
propose improved algorithm computing mod ell galois representations associated cusp form level proposed method allows explicitly compute ell weight cases ell weight results rigorously proved correct example compute values modulo ramanujans tau function huge primes sign improved uper bound lehmers conjecture ramanujans tau function
Affiliations des auteurs :
Peng Tian 1
@article{10_4064_aa164_4_5,
author = {Peng Tian},
title = {Computations of {Galois} representations
associated to modular forms of level one},
journal = {Acta Arithmetica},
pages = {399--411},
publisher = {mathdoc},
volume = {164},
number = {4},
year = {2014},
doi = {10.4064/aa164-4-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-4-5/}
}
TY - JOUR AU - Peng Tian TI - Computations of Galois representations associated to modular forms of level one JO - Acta Arithmetica PY - 2014 SP - 399 EP - 411 VL - 164 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa164-4-5/ DO - 10.4064/aa164-4-5 LA - en ID - 10_4064_aa164_4_5 ER -
Peng Tian. Computations of Galois representations associated to modular forms of level one. Acta Arithmetica, Tome 164 (2014) no. 4, pp. 399-411. doi: 10.4064/aa164-4-5
Cité par Sources :