An effective bound of $p$ for algebraic points on Shimura curves of $\varGamma _{0}(p)$-type
Acta Arithmetica, Tome 164 (2014) no. 4, pp. 343-353
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In previous articles, we showed that for number fields in a certain large class, there are at most elliptic points on a Shimura curve of $\varGamma _0(p)$-type for every sufficiently large prime number $p$. In this article, we obtain an effective bound for such $p$.
Keywords:
previous articles showed number fields certain large class there elliptic points shimura curve vargamma type every sufficiently large prime number nbsp article obtain effective bound nbsp
Affiliations des auteurs :
Keisuke Arai 1
@article{10_4064_aa164_4_2,
author = {Keisuke Arai},
title = {An effective bound of $p$ for algebraic points on {Shimura} curves of $\varGamma _{0}(p)$-type},
journal = {Acta Arithmetica},
pages = {343--353},
year = {2014},
volume = {164},
number = {4},
doi = {10.4064/aa164-4-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-4-2/}
}
TY - JOUR
AU - Keisuke Arai
TI - An effective bound of $p$ for algebraic points on Shimura curves of $\varGamma _{0}(p)$-type
JO - Acta Arithmetica
PY - 2014
SP - 343
EP - 353
VL - 164
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa164-4-2/
DO - 10.4064/aa164-4-2
LA - en
ID - 10_4064_aa164_4_2
ER -
Keisuke Arai. An effective bound of $p$ for algebraic points on Shimura curves of $\varGamma _{0}(p)$-type. Acta Arithmetica, Tome 164 (2014) no. 4, pp. 343-353. doi: 10.4064/aa164-4-2
Cité par Sources :