Sumsets in quadratic residues
Acta Arithmetica, Tome 164 (2014) no. 3, pp. 221-243.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We describe all sets $A \subseteq {\mathbb F}_p$ which represent the quadratic residues $R \subseteq {\mathbb F}_p$ in the sense that $R=A+A$ or $R=A\mathbin {\hat{+} }A$. Also, we consider the case of an approximate equality $R \approx A+A$ and $R \approx A\mathbin {\hat{+}} A$ and prove that $A$ is then close to a perfect difference set.
DOI : 10.4064/aa164-3-2
Keywords: describe sets subseteq mathbb which represent quadratic residues subseteq mathbb sense mathbin hat consider approximate equality approx approx mathbin hat prove close perfect difference set

I. D. Shkredov 1

1 Division of Algebra and Number Theory Steklov Mathematical Institute Gubkina St. 8 Moscow, Russia 119991 and Delone Laboratory of Discrete and Computational Geometry Yaroslavl' State University Sovetskaya St. 14 Yaroslavl', Russia 150000
@article{10_4064_aa164_3_2,
     author = {I. D. Shkredov},
     title = {Sumsets in quadratic residues},
     journal = {Acta Arithmetica},
     pages = {221--243},
     publisher = {mathdoc},
     volume = {164},
     number = {3},
     year = {2014},
     doi = {10.4064/aa164-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-3-2/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - Sumsets in quadratic residues
JO  - Acta Arithmetica
PY  - 2014
SP  - 221
EP  - 243
VL  - 164
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa164-3-2/
DO  - 10.4064/aa164-3-2
LA  - en
ID  - 10_4064_aa164_3_2
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T Sumsets in quadratic residues
%J Acta Arithmetica
%D 2014
%P 221-243
%V 164
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa164-3-2/
%R 10.4064/aa164-3-2
%G en
%F 10_4064_aa164_3_2
I. D. Shkredov. Sumsets in quadratic residues. Acta Arithmetica, Tome 164 (2014) no. 3, pp. 221-243. doi : 10.4064/aa164-3-2. http://geodesic.mathdoc.fr/articles/10.4064/aa164-3-2/

Cité par Sources :