Galois towers over non-prime finite fields
Acta Arithmetica, Tome 164 (2014) no. 2, pp. 163-179.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct Galois towers with good asymptotic properties over any non-prime finite field $\mathbb F_{\ell }$; that is, we construct sequences of function fields $\mathcal {N}=(N_1 \subset N_2 \subset \cdots )$ over $\mathbb F_{\ell }$ of increasing genus, such that all the extensions $N_i/N_1$ are Galois extensions and the number of rational places of these function fields grows linearly with the genus. The limits of the towers satisfy the same lower bounds as the best currently known lower bounds for the Ihara constant for non-prime finite fields. Towers with these properties are important for applications in various fields including coding theory and cryptography.
DOI : 10.4064/aa164-2-6
Keywords: construct galois towers asymptotic properties non prime finite field mathbb ell construct sequences function fields mathcal subset subset cdots mathbb ell increasing genus extensions galois extensions number rational places these function fields grows linearly genus limits towers satisfy lower bounds best currently known lower bounds ihara constant non prime finite fields towers these properties important applications various fields including coding theory cryptography

Alp Bassa 1 ; Peter Beelen 2 ; Arnaldo Garcia 3 ; Henning Stichtenoth 1

1 MDBF Sabancı University 34956 Tuzla, İstanbul, Turkey
2 Department of Applied Mathematics and Computer Science Technical University of Denmark Matematiktorvet, Building 303B DK-2800, Lyngby, Denmark
3 IMPA – Instituto Nacional de Matemática Pura e Aplicada Estrada Dona Castorina 110 22460-320, Rio de Janeiro, RJ, Brazil
@article{10_4064_aa164_2_6,
     author = {Alp Bassa and Peter Beelen and Arnaldo Garcia and Henning Stichtenoth},
     title = {Galois towers over non-prime finite fields},
     journal = {Acta Arithmetica},
     pages = {163--179},
     publisher = {mathdoc},
     volume = {164},
     number = {2},
     year = {2014},
     doi = {10.4064/aa164-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-6/}
}
TY  - JOUR
AU  - Alp Bassa
AU  - Peter Beelen
AU  - Arnaldo Garcia
AU  - Henning Stichtenoth
TI  - Galois towers over non-prime finite fields
JO  - Acta Arithmetica
PY  - 2014
SP  - 163
EP  - 179
VL  - 164
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-6/
DO  - 10.4064/aa164-2-6
LA  - en
ID  - 10_4064_aa164_2_6
ER  - 
%0 Journal Article
%A Alp Bassa
%A Peter Beelen
%A Arnaldo Garcia
%A Henning Stichtenoth
%T Galois towers over non-prime finite fields
%J Acta Arithmetica
%D 2014
%P 163-179
%V 164
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-6/
%R 10.4064/aa164-2-6
%G en
%F 10_4064_aa164_2_6
Alp Bassa; Peter Beelen; Arnaldo Garcia; Henning Stichtenoth. Galois towers over non-prime finite fields. Acta Arithmetica, Tome 164 (2014) no. 2, pp. 163-179. doi : 10.4064/aa164-2-6. http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-6/

Cité par Sources :