Galois towers over non-prime finite fields
Acta Arithmetica, Tome 164 (2014) no. 2, pp. 163-179
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We construct Galois towers with good asymptotic properties over any non-prime finite field $\mathbb F_{\ell }$; that is, we construct sequences of function fields $\mathcal {N}=(N_1 \subset N_2 \subset \cdots )$ over $\mathbb F_{\ell }$ of increasing genus, such that all the extensions $N_i/N_1$ are Galois extensions and the number of rational places of these function fields grows linearly with the genus. The limits of the towers satisfy the same lower bounds as the best currently known lower bounds for the Ihara constant for non-prime finite fields. Towers with these properties are important for applications in various fields including coding theory and cryptography.
Keywords:
construct galois towers asymptotic properties non prime finite field mathbb ell construct sequences function fields mathcal subset subset cdots mathbb ell increasing genus extensions galois extensions number rational places these function fields grows linearly genus limits towers satisfy lower bounds best currently known lower bounds ihara constant non prime finite fields towers these properties important applications various fields including coding theory cryptography
Affiliations des auteurs :
Alp Bassa 1 ; Peter Beelen 2 ; Arnaldo Garcia 3 ; Henning Stichtenoth 1
@article{10_4064_aa164_2_6,
author = {Alp Bassa and Peter Beelen and Arnaldo Garcia and Henning Stichtenoth},
title = {Galois towers over non-prime finite fields},
journal = {Acta Arithmetica},
pages = {163--179},
year = {2014},
volume = {164},
number = {2},
doi = {10.4064/aa164-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-6/}
}
TY - JOUR AU - Alp Bassa AU - Peter Beelen AU - Arnaldo Garcia AU - Henning Stichtenoth TI - Galois towers over non-prime finite fields JO - Acta Arithmetica PY - 2014 SP - 163 EP - 179 VL - 164 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-6/ DO - 10.4064/aa164-2-6 LA - en ID - 10_4064_aa164_2_6 ER -
Alp Bassa; Peter Beelen; Arnaldo Garcia; Henning Stichtenoth. Galois towers over non-prime finite fields. Acta Arithmetica, Tome 164 (2014) no. 2, pp. 163-179. doi: 10.4064/aa164-2-6
Cité par Sources :