On the sum of dilations of a set
Acta Arithmetica, Tome 164 (2014) no. 2, pp. 153-162
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that for any relatively prime integers $1\leq p q$ and for any finite $A \subset \mathbb {Z}$ one has $$|p \cdot A + q \cdot A | \geq (p + q) |A| - (pq)^{(p+q-3)(p+q) + 1}.$$
Keywords:
relatively prime integers leq finite subset mathbb has cdot cdot geq q
Affiliations des auteurs :
Antal Balog 1 ; George Shakan 2
@article{10_4064_aa164_2_5,
author = {Antal Balog and George Shakan},
title = {On the sum of dilations of a set},
journal = {Acta Arithmetica},
pages = {153--162},
year = {2014},
volume = {164},
number = {2},
doi = {10.4064/aa164-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-5/}
}
Antal Balog; George Shakan. On the sum of dilations of a set. Acta Arithmetica, Tome 164 (2014) no. 2, pp. 153-162. doi: 10.4064/aa164-2-5
Cité par Sources :