On the sum of dilations of a set
Acta Arithmetica, Tome 164 (2014) no. 2, pp. 153-162.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that for any relatively prime integers $1\leq p q$ and for any finite $A \subset \mathbb {Z}$ one has $$|p \cdot A + q \cdot A | \geq (p + q) |A| - (pq)^{(p+q-3)(p+q) + 1}.$$
DOI : 10.4064/aa164-2-5
Keywords: relatively prime integers leq finite subset mathbb has cdot cdot geq q

Antal Balog 1 ; George Shakan 2

1 Alfréd Rényi Institute of Mathematics P.O. Box 127 1364 Budapest, Hungary
2 Department of Mathematics University of Wyoming Laramie, WY 82072, U.S.A.
@article{10_4064_aa164_2_5,
     author = {Antal Balog and George Shakan},
     title = {On the sum of dilations of a set},
     journal = {Acta Arithmetica},
     pages = {153--162},
     publisher = {mathdoc},
     volume = {164},
     number = {2},
     year = {2014},
     doi = {10.4064/aa164-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-5/}
}
TY  - JOUR
AU  - Antal Balog
AU  - George Shakan
TI  - On the sum of dilations of a set
JO  - Acta Arithmetica
PY  - 2014
SP  - 153
EP  - 162
VL  - 164
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-5/
DO  - 10.4064/aa164-2-5
LA  - en
ID  - 10_4064_aa164_2_5
ER  - 
%0 Journal Article
%A Antal Balog
%A George Shakan
%T On the sum of dilations of a set
%J Acta Arithmetica
%D 2014
%P 153-162
%V 164
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-5/
%R 10.4064/aa164-2-5
%G en
%F 10_4064_aa164_2_5
Antal Balog; George Shakan. On the sum of dilations of a set. Acta Arithmetica, Tome 164 (2014) no. 2, pp. 153-162. doi : 10.4064/aa164-2-5. http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-5/

Cité par Sources :