Local-global principle for certain biquadratic normic bundles
Acta Arithmetica, Tome 164 (2014) no. 2, pp. 137-144
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be a proper smooth variety having an affine open subset defined by the normic equation $N_{k(\sqrt {a},\sqrt {b})/k}({\textbf {x}})=Q(t_{1},\ldots ,t_{m})^{2}$ over a number field $k$. We prove that: (1) the failure of the local-global principle for zero-cycles is controlled by the Brauer group of $X;$ (2) the analogue for rational points is also valid assuming Schinzel's hypothesis.
Keywords:
proper smooth variety having affine subset defined normic equation sqrt sqrt textbf ldots number field nbsp prove failure local global principle zero cycles controlled brauer group analogue rational points valid assuming schinzels hypothesis
Affiliations des auteurs :
Yang Cao 1 ; Yongqi Liang 2
@article{10_4064_aa164_2_3,
author = {Yang Cao and Yongqi Liang},
title = {Local-global principle for certain biquadratic normic bundles},
journal = {Acta Arithmetica},
pages = {137--144},
publisher = {mathdoc},
volume = {164},
number = {2},
year = {2014},
doi = {10.4064/aa164-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-3/}
}
TY - JOUR AU - Yang Cao AU - Yongqi Liang TI - Local-global principle for certain biquadratic normic bundles JO - Acta Arithmetica PY - 2014 SP - 137 EP - 144 VL - 164 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-3/ DO - 10.4064/aa164-2-3 LA - en ID - 10_4064_aa164_2_3 ER -
Yang Cao; Yongqi Liang. Local-global principle for certain biquadratic normic bundles. Acta Arithmetica, Tome 164 (2014) no. 2, pp. 137-144. doi: 10.4064/aa164-2-3
Cité par Sources :