On the behaviour close to the unit circle of the power series
with Möbius function coefficients
Acta Arithmetica, Tome 164 (2014) no. 2, pp. 119-136
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\mathfrak {M}(z)=\sum _{n=1}^{\infty }\mu (n)z^n$. We prove that for each root of unity $e(\beta )=e^{2\pi i\beta }$ there is an $a>0$ such that $\mathfrak {M}(e(\beta )r)=\varOmega ((1-r)^{-a})$ as $r\to 1-.$ For roots of unity $e(l/q)$ with $q\le 100$ we prove that these omega-estimates are true with $a=1/2$. From omega-estimates for $\mathfrak {M}(z)$ we obtain omega-estimates for some finite sums.
Keywords:
mathfrak sum infty prove each root unity beta beta there mathfrak beta varomega r a roots unity prove these omega estimates omega estimates mathfrak obtain omega estimates finite sums
Affiliations des auteurs :
Oleg Petrushov 1
@article{10_4064_aa164_2_2,
author = {Oleg Petrushov},
title = {On the behaviour close to the unit circle of the power series
with {M\"obius} function coefficients},
journal = {Acta Arithmetica},
pages = {119--136},
year = {2014},
volume = {164},
number = {2},
doi = {10.4064/aa164-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-2/}
}
TY - JOUR AU - Oleg Petrushov TI - On the behaviour close to the unit circle of the power series with Möbius function coefficients JO - Acta Arithmetica PY - 2014 SP - 119 EP - 136 VL - 164 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-2/ DO - 10.4064/aa164-2-2 LA - en ID - 10_4064_aa164_2_2 ER -
Oleg Petrushov. On the behaviour close to the unit circle of the power series with Möbius function coefficients. Acta Arithmetica, Tome 164 (2014) no. 2, pp. 119-136. doi: 10.4064/aa164-2-2
Cité par Sources :