On the behaviour close to the unit circle of the power series with Möbius function coefficients
Acta Arithmetica, Tome 164 (2014) no. 2, pp. 119-136.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathfrak {M}(z)=\sum _{n=1}^{\infty }\mu (n)z^n$. We prove that for each root of unity $e(\beta )=e^{2\pi i\beta }$ there is an $a>0$ such that $\mathfrak {M}(e(\beta )r)=\varOmega ((1-r)^{-a})$ as $r\to 1-.$ For roots of unity $e(l/q)$ with $q\le 100$ we prove that these omega-estimates are true with $a=1/2$. From omega-estimates for $\mathfrak {M}(z)$ we obtain omega-estimates for some finite sums.
DOI : 10.4064/aa164-2-2
Keywords: mathfrak sum infty prove each root unity beta beta there mathfrak beta varomega r a roots unity prove these omega estimates omega estimates mathfrak obtain omega estimates finite sums

Oleg Petrushov 1

1 Faculty of Mechanics and Mathematics Moscow State University Vorobyovi Gory Moscow, Russia
@article{10_4064_aa164_2_2,
     author = {Oleg Petrushov},
     title = {On the behaviour close to the unit circle of the power series
 with {M\"obius} function coefficients},
     journal = {Acta Arithmetica},
     pages = {119--136},
     publisher = {mathdoc},
     volume = {164},
     number = {2},
     year = {2014},
     doi = {10.4064/aa164-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-2/}
}
TY  - JOUR
AU  - Oleg Petrushov
TI  - On the behaviour close to the unit circle of the power series
 with Möbius function coefficients
JO  - Acta Arithmetica
PY  - 2014
SP  - 119
EP  - 136
VL  - 164
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-2/
DO  - 10.4064/aa164-2-2
LA  - en
ID  - 10_4064_aa164_2_2
ER  - 
%0 Journal Article
%A Oleg Petrushov
%T On the behaviour close to the unit circle of the power series
 with Möbius function coefficients
%J Acta Arithmetica
%D 2014
%P 119-136
%V 164
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-2/
%R 10.4064/aa164-2-2
%G en
%F 10_4064_aa164_2_2
Oleg Petrushov. On the behaviour close to the unit circle of the power series
 with Möbius function coefficients. Acta Arithmetica, Tome 164 (2014) no. 2, pp. 119-136. doi : 10.4064/aa164-2-2. http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-2/

Cité par Sources :