A note on the article by F. Luca “On the system of Diophantine equations $a^2+b^2=(m^2+1)^r$ and $a^{x}+b^y=(m^2+1)^z$” (Acta Arith. 153 (2012), 373–392)
Acta Arithmetica, Tome 164 (2014) no. 1, pp. 31-42.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $r,m$ be positive integers with $r>1$, $m$ even, and $A,B$ be integers satisfying $A+B \sqrt {-1}=(m+\sqrt {-1})^{r}$. We prove that the Diophantine equation $|A|^x+|B|^y=(m^{2}+1)^z$ has no positive integer solutions in $(x,y,z)$ other than $(x,y,z)=(2,2,r)$, whenever $r>10^{74}$ or $m>10^{34}$. Our result is an explicit refinement of a theorem due to F. Luca.
DOI : 10.4064/aa164-1-3
Keywords: positive integers even integers satisfying sqrt sqrt prove diophantine equation has positive integer solutions other whenever result explicit refinement theorem due luca

Takafumi Miyazaki 1

1 Department of Mathematics College of Science and Technology Mathematics Department and Information Sciences Nihon University Suruga-Dai Kanda, Chiyoda Tokyo 101-8308, Japan
@article{10_4064_aa164_1_3,
     author = {Takafumi Miyazaki},
     title = {A note on the article by {F.} {Luca
{\textquotedblleft}On} the system of {Diophantine} equations $a^2+b^2=(m^2+1)^r$ and $a^{x}+b^y=(m^2+1)^z${{\textquotedblright}
(Acta} {Arith.} 153 (2012), 373{\textendash}392)},
     journal = {Acta Arithmetica},
     pages = {31--42},
     publisher = {mathdoc},
     volume = {164},
     number = {1},
     year = {2014},
     doi = {10.4064/aa164-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-1-3/}
}
TY  - JOUR
AU  - Takafumi Miyazaki
TI  - A note on the article by F. Luca
“On the system of Diophantine equations $a^2+b^2=(m^2+1)^r$ and $a^{x}+b^y=(m^2+1)^z$”
(Acta Arith. 153 (2012), 373–392)
JO  - Acta Arithmetica
PY  - 2014
SP  - 31
EP  - 42
VL  - 164
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa164-1-3/
DO  - 10.4064/aa164-1-3
LA  - en
ID  - 10_4064_aa164_1_3
ER  - 
%0 Journal Article
%A Takafumi Miyazaki
%T A note on the article by F. Luca
“On the system of Diophantine equations $a^2+b^2=(m^2+1)^r$ and $a^{x}+b^y=(m^2+1)^z$”
(Acta Arith. 153 (2012), 373–392)
%J Acta Arithmetica
%D 2014
%P 31-42
%V 164
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa164-1-3/
%R 10.4064/aa164-1-3
%G en
%F 10_4064_aa164_1_3
Takafumi Miyazaki. A note on the article by F. Luca
“On the system of Diophantine equations $a^2+b^2=(m^2+1)^r$ and $a^{x}+b^y=(m^2+1)^z$”
(Acta Arith. 153 (2012), 373–392). Acta Arithmetica, Tome 164 (2014) no. 1, pp. 31-42. doi : 10.4064/aa164-1-3. http://geodesic.mathdoc.fr/articles/10.4064/aa164-1-3/

Cité par Sources :