A note on the article by F. Luca
“On the system of Diophantine equations $a^2+b^2=(m^2+1)^r$ and $a^{x}+b^y=(m^2+1)^z$”
(Acta Arith. 153 (2012), 373–392)
Acta Arithmetica, Tome 164 (2014) no. 1, pp. 31-42
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $r,m$ be positive integers with $r>1$, $m$ even, and $A,B$ be integers satisfying $A+B
\sqrt {-1}=(m+\sqrt {-1})^{r}$. We prove that the Diophantine equation $|A|^x+|B|^y=(m^{2}+1)^z$ has no positive integer solutions in $(x,y,z)$ other than $(x,y,z)=(2,2,r)$, whenever $r>10^{74}$ or $m>10^{34}$. Our result is an explicit refinement of a theorem due to F. Luca.
Keywords:
positive integers even integers satisfying sqrt sqrt prove diophantine equation has positive integer solutions other whenever result explicit refinement theorem due luca
Affiliations des auteurs :
Takafumi Miyazaki 1
@article{10_4064_aa164_1_3,
author = {Takafumi Miyazaki},
title = {A note on the article by {F.} {Luca
{\textquotedblleft}On} the system of {Diophantine} equations $a^2+b^2=(m^2+1)^r$ and $a^{x}+b^y=(m^2+1)^z${{\textquotedblright}
(Acta} {Arith.} 153 (2012), 373{\textendash}392)},
journal = {Acta Arithmetica},
pages = {31--42},
year = {2014},
volume = {164},
number = {1},
doi = {10.4064/aa164-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-1-3/}
}
TY - JOUR
AU - Takafumi Miyazaki
TI - A note on the article by F. Luca
“On the system of Diophantine equations $a^2+b^2=(m^2+1)^r$ and $a^{x}+b^y=(m^2+1)^z$”
(Acta Arith. 153 (2012), 373–392)
JO - Acta Arithmetica
PY - 2014
SP - 31
EP - 42
VL - 164
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa164-1-3/
DO - 10.4064/aa164-1-3
LA - en
ID - 10_4064_aa164_1_3
ER -
%0 Journal Article
%A Takafumi Miyazaki
%T A note on the article by F. Luca
“On the system of Diophantine equations $a^2+b^2=(m^2+1)^r$ and $a^{x}+b^y=(m^2+1)^z$”
(Acta Arith. 153 (2012), 373–392)
%J Acta Arithmetica
%D 2014
%P 31-42
%V 164
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/aa164-1-3/
%R 10.4064/aa164-1-3
%G en
%F 10_4064_aa164_1_3
Takafumi Miyazaki. A note on the article by F. Luca
“On the system of Diophantine equations $a^2+b^2=(m^2+1)^r$ and $a^{x}+b^y=(m^2+1)^z$”
(Acta Arith. 153 (2012), 373–392). Acta Arithmetica, Tome 164 (2014) no. 1, pp. 31-42. doi: 10.4064/aa164-1-3
Cité par Sources :