On the equation $a^{3} + b^{3n} = c^{2}$
Acta Arithmetica, Tome 163 (2014) no. 4, pp. 327-343
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study coprime integer solutions to the equation $a^3 + b^{3n} = c^2$ using Galois representations and modular forms. This case represents perhaps the last natural family of generalized Fermat equations descended from spherical cases which is amenable to resolution using the so-called modular method. Our techniques involve an elaborate combination of ingredients, ranging from $\mathbb Q$-curves and a delicate multi-Frey approach, to appeal to intricate image of inertia arguments.
Keywords:
study coprime integer solutions equation using galois representations modular forms represents perhaps natural family generalized fermat equations descended spherical cases which amenable resolution using so called modular method techniques involve elaborate combination ingredients ranging mathbb q curves delicate multi frey approach appeal intricate image inertia arguments
Affiliations des auteurs :
Michael A. Bennett 1 ; Imin Chen 2 ; Sander R. Dahmen 3 ; Soroosh Yazdani 4
@article{10_4064_aa163_4_3,
author = {Michael A. Bennett and Imin Chen and Sander R. Dahmen and Soroosh Yazdani},
title = {On the equation $a^{3} + b^{3n} = c^{2}$},
journal = {Acta Arithmetica},
pages = {327--343},
year = {2014},
volume = {163},
number = {4},
doi = {10.4064/aa163-4-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-4-3/}
}
TY - JOUR
AU - Michael A. Bennett
AU - Imin Chen
AU - Sander R. Dahmen
AU - Soroosh Yazdani
TI - On the equation $a^{3} + b^{3n} = c^{2}$
JO - Acta Arithmetica
PY - 2014
SP - 327
EP - 343
VL - 163
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa163-4-3/
DO - 10.4064/aa163-4-3
LA - en
ID - 10_4064_aa163_4_3
ER -
Michael A. Bennett; Imin Chen; Sander R. Dahmen; Soroosh Yazdani. On the equation $a^{3} + b^{3n} = c^{2}$. Acta Arithmetica, Tome 163 (2014) no. 4, pp. 327-343. doi: 10.4064/aa163-4-3
Cité par Sources :