Waring's number for large subgroups of $\mathbb Z_{p}^{*}$
Acta Arithmetica, Tome 163 (2014) no. 4, pp. 309-325.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $p$ be a prime, $\mathbb Z_p$ be the finite field in $p$ elements, $k$ be a positive integer, and $A$ be the multiplicative subgroup of nonzero $k$th powers in $\mathbb Z_p$. The goal of this paper is to determine, for a given positive integer $s$, a value $t_s$ such that if $|A|\gg t_s$ then every element of $\mathbb Z_p$ is a sum of $s$ $k$th powers. We obtain $t_4 = p^{{22/39}+\epsilon }$, $t_5= p^{{15/29}+\epsilon }$ and for $s \ge 6$, $t_s= p^{\frac {9s+45}{29s+33}+\epsilon }$. For $s \ge 24$ further improvements are made, such as $t_{32}=p^{{5/16} + \epsilon }$ and $t_{128} = p^{{1/4}}$.
DOI : 10.4064/aa163-4-2
Keywords: prime mathbb finite field elements nbsp positive integer multiplicative subgroup nonzero kth powers mathbb paper determine given positive integer value every element mathbb sum kth powers obtain epsilon epsilon frac epsilon further improvements made epsilon

Todd Cochrane 1 ; Derrick Hart 2 ; Christopher Pinner 1 ; Craig Spencer 1

1 Department of Mathematics Kansas State University Manhattan, KS 66506, U.S.A.
2 Department of Mathematics Rockhurst University Kansas City, MO 64110, U.S.A.
@article{10_4064_aa163_4_2,
     author = {Todd Cochrane and Derrick Hart and Christopher Pinner and Craig Spencer},
     title = {Waring's number for large subgroups of $\mathbb Z_{p}^{*}$},
     journal = {Acta Arithmetica},
     pages = {309--325},
     publisher = {mathdoc},
     volume = {163},
     number = {4},
     year = {2014},
     doi = {10.4064/aa163-4-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-4-2/}
}
TY  - JOUR
AU  - Todd Cochrane
AU  - Derrick Hart
AU  - Christopher Pinner
AU  - Craig Spencer
TI  - Waring's number for large subgroups of $\mathbb Z_{p}^{*}$
JO  - Acta Arithmetica
PY  - 2014
SP  - 309
EP  - 325
VL  - 163
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa163-4-2/
DO  - 10.4064/aa163-4-2
LA  - en
ID  - 10_4064_aa163_4_2
ER  - 
%0 Journal Article
%A Todd Cochrane
%A Derrick Hart
%A Christopher Pinner
%A Craig Spencer
%T Waring's number for large subgroups of $\mathbb Z_{p}^{*}$
%J Acta Arithmetica
%D 2014
%P 309-325
%V 163
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa163-4-2/
%R 10.4064/aa163-4-2
%G en
%F 10_4064_aa163_4_2
Todd Cochrane; Derrick Hart; Christopher Pinner; Craig Spencer. Waring's number for large subgroups of $\mathbb Z_{p}^{*}$. Acta Arithmetica, Tome 163 (2014) no. 4, pp. 309-325. doi : 10.4064/aa163-4-2. http://geodesic.mathdoc.fr/articles/10.4064/aa163-4-2/

Cité par Sources :