Counting rational points on del Pezzo surfaces with a conic bundle structure
Acta Arithmetica, Tome 163 (2014) no. 3, pp. 271-298.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any number field $k$, upper bounds are established for the number of $k$-rational points of bounded height on non-singular del Pezzo surfaces defined over $k$, which are equipped with suitable conic bundle structures over $k$.
DOI : 10.4064/aa163-3-6
Keywords: number field upper bounds established number k rational points bounded height non singular del pezzo surfaces defined which equipped suitable conic bundle structures

Tim Browning 1 ; Michael Swarbrick Jones 1

1 School of Mathematics University of Bristol Bristol, BS8 1TW, UK
@article{10_4064_aa163_3_6,
     author = {Tim Browning and Michael Swarbrick Jones},
     title = {Counting rational points on del {Pezzo} surfaces
 with a conic bundle structure},
     journal = {Acta Arithmetica},
     pages = {271--298},
     publisher = {mathdoc},
     volume = {163},
     number = {3},
     year = {2014},
     doi = {10.4064/aa163-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-3-6/}
}
TY  - JOUR
AU  - Tim Browning
AU  - Michael Swarbrick Jones
TI  - Counting rational points on del Pezzo surfaces
 with a conic bundle structure
JO  - Acta Arithmetica
PY  - 2014
SP  - 271
EP  - 298
VL  - 163
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa163-3-6/
DO  - 10.4064/aa163-3-6
LA  - en
ID  - 10_4064_aa163_3_6
ER  - 
%0 Journal Article
%A Tim Browning
%A Michael Swarbrick Jones
%T Counting rational points on del Pezzo surfaces
 with a conic bundle structure
%J Acta Arithmetica
%D 2014
%P 271-298
%V 163
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa163-3-6/
%R 10.4064/aa163-3-6
%G en
%F 10_4064_aa163_3_6
Tim Browning; Michael Swarbrick Jones. Counting rational points on del Pezzo surfaces
 with a conic bundle structure. Acta Arithmetica, Tome 163 (2014) no. 3, pp. 271-298. doi : 10.4064/aa163-3-6. http://geodesic.mathdoc.fr/articles/10.4064/aa163-3-6/

Cité par Sources :