Counting rational points on del Pezzo surfaces
with a conic bundle structure
Acta Arithmetica, Tome 163 (2014) no. 3, pp. 271-298
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For any number field $k$, upper bounds are established for the number of $k$-rational points of bounded height on non-singular del Pezzo surfaces defined over $k$, which are equipped with suitable conic bundle structures over $k$.
Keywords:
number field upper bounds established number k rational points bounded height non singular del pezzo surfaces defined which equipped suitable conic bundle structures
Affiliations des auteurs :
Tim Browning 1 ; Michael Swarbrick Jones 1
@article{10_4064_aa163_3_6,
author = {Tim Browning and Michael Swarbrick Jones},
title = {Counting rational points on del {Pezzo} surfaces
with a conic bundle structure},
journal = {Acta Arithmetica},
pages = {271--298},
publisher = {mathdoc},
volume = {163},
number = {3},
year = {2014},
doi = {10.4064/aa163-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-3-6/}
}
TY - JOUR AU - Tim Browning AU - Michael Swarbrick Jones TI - Counting rational points on del Pezzo surfaces with a conic bundle structure JO - Acta Arithmetica PY - 2014 SP - 271 EP - 298 VL - 163 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa163-3-6/ DO - 10.4064/aa163-3-6 LA - en ID - 10_4064_aa163_3_6 ER -
%0 Journal Article %A Tim Browning %A Michael Swarbrick Jones %T Counting rational points on del Pezzo surfaces with a conic bundle structure %J Acta Arithmetica %D 2014 %P 271-298 %V 163 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa163-3-6/ %R 10.4064/aa163-3-6 %G en %F 10_4064_aa163_3_6
Tim Browning; Michael Swarbrick Jones. Counting rational points on del Pezzo surfaces with a conic bundle structure. Acta Arithmetica, Tome 163 (2014) no. 3, pp. 271-298. doi: 10.4064/aa163-3-6
Cité par Sources :