The sum of divisors of a quadratic form
Acta Arithmetica, Tome 163 (2014) no. 2, pp. 161-177
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We study the sum $\tau$ of divisors of the quadratic form
$m_1^2+m_2^2+m_3^2$. Let $$S_3(X)=\sum_{1\le m_1,m_2,m_3\le
X}\tau(m_1^2+m_2^2+m_3^2).$$ We obtain the asymptotic formula
$$S_3(X)=C_1X^3\log X+ C_2X^3+O(X^2\log^7 X),$$
where $C_1,C_2$ are two constants. This improves upon the error
term $O_\varepsilon(X^{8/3+\varepsilon})$ obtained by Guo and Zhai
(2012).
Keywords:
study sum tau divisors quadratic form sum tau obtain asymptotic formula log log where constants improves error term varepsilon varepsilon obtained guo zhai
Affiliations des auteurs :
Lilu Zhao  1
@article{10_4064_aa163_2_6,
author = {Lilu Zhao},
title = {The sum of divisors of a quadratic form},
journal = {Acta Arithmetica},
pages = {161--177},
year = {2014},
volume = {163},
number = {2},
doi = {10.4064/aa163-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-6/}
}
Lilu Zhao. The sum of divisors of a quadratic form. Acta Arithmetica, Tome 163 (2014) no. 2, pp. 161-177. doi: 10.4064/aa163-2-6
Cité par Sources :