Vandermonde nets
Acta Arithmetica, Tome 163 (2014) no. 2, pp. 145-160.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The second-named author recently suggested identifying the generating matrices of a digital $(t,m,s)$-net over the finite field ${\mathbb F}_q$ with an $s \times m$ matrix $C$ over ${\mathbb F}_{q^m}$. More exactly, the entries of $C$ are determined by interpreting the rows of the generating matrices as elements of ${\mathbb F}_{q^m}$. This paper introduces so-called Vandermonde nets, which correspond to Vandermonde-type matrices $C$, and discusses the quality parameter and the discrepancy of such nets. The methods that have been successfully used for the investigation of polynomial lattice point sets and hyperplane nets are applied to this new class of digital nets. In this way, existence results for small quality parameters and good discrepancy bounds are obtained. Furthermore, a first step towards component-by-component constructions is made. A novelty of this new class of nets is that explicit constructions of Vandermonde nets over ${\mathbb F}_q$ in dimensions $s\leq q+1$ with best possible quality parameter can be given. So far, good explicit constructions of the competing polynomial lattice point sets are known only in dimensions $s\leq 2$.
DOI : 10.4064/aa163-2-5
Keywords: second named author recently suggested identifying generating matrices digital net finite field mathbb times matrix nbsp mathbb exactly entries determined interpreting rows generating matrices elements mathbb paper introduces so called vandermonde nets which correspond vandermonde type matrices discusses quality parameter discrepancy nets methods have successfully investigation polynomial lattice point sets hyperplane nets applied class digital nets existence results small quality parameters discrepancy bounds obtained furthermore first step towards component by component constructions made novelty class nets explicit constructions vandermonde nets mathbb dimensions leq best possible quality parameter given far explicit constructions competing polynomial lattice point sets known only dimensions leq

Roswitha Hofer 1 ; Harald Niederreiter 2

1 Institute of Financial Mathematics Johannes Kepler University Linz Altenbergerstr. 69 A-4040 Linz, Austria
2 Johann Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences Altenbergerstr. 69 A-4040 Linz, Austria and Department of Mathematics University of Salzburg Hellbrunnerstr. 34 A-5020 Salzburg, Austria
@article{10_4064_aa163_2_5,
     author = {Roswitha Hofer and Harald Niederreiter},
     title = {Vandermonde nets},
     journal = {Acta Arithmetica},
     pages = {145--160},
     publisher = {mathdoc},
     volume = {163},
     number = {2},
     year = {2014},
     doi = {10.4064/aa163-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-5/}
}
TY  - JOUR
AU  - Roswitha Hofer
AU  - Harald Niederreiter
TI  - Vandermonde nets
JO  - Acta Arithmetica
PY  - 2014
SP  - 145
EP  - 160
VL  - 163
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-5/
DO  - 10.4064/aa163-2-5
LA  - en
ID  - 10_4064_aa163_2_5
ER  - 
%0 Journal Article
%A Roswitha Hofer
%A Harald Niederreiter
%T Vandermonde nets
%J Acta Arithmetica
%D 2014
%P 145-160
%V 163
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-5/
%R 10.4064/aa163-2-5
%G en
%F 10_4064_aa163_2_5
Roswitha Hofer; Harald Niederreiter. Vandermonde nets. Acta Arithmetica, Tome 163 (2014) no. 2, pp. 145-160. doi : 10.4064/aa163-2-5. http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-5/

Cité par Sources :