Factors of a perfect square
Acta Arithmetica, Tome 163 (2014) no. 2, pp. 141-143
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider a conjecture of Erdős and Rosenfeld and a conjecture of Ruzsa when the number is a perfect square. In particular, we show that every perfect square $n$ can have at most five divisors between $\sqrt{n} - \sqrt[4]{n}\,(\log n)^{1/7}$ and $\sqrt{n} + \sqrt[4]{n}\,(\log n)^{1/7}$.
Keywords:
consider conjecture erd rosenfeld conjecture ruzsa number perfect square particular every perfect square have five divisors between sqrt sqrt log sqrt sqrt log
Affiliations des auteurs :
Tsz Ho Chan 1
@article{10_4064_aa163_2_4,
author = {Tsz Ho Chan},
title = {Factors of a perfect square},
journal = {Acta Arithmetica},
pages = {141--143},
publisher = {mathdoc},
volume = {163},
number = {2},
year = {2014},
doi = {10.4064/aa163-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-4/}
}
Tsz Ho Chan. Factors of a perfect square. Acta Arithmetica, Tome 163 (2014) no. 2, pp. 141-143. doi: 10.4064/aa163-2-4
Cité par Sources :