Factors of a perfect square
Acta Arithmetica, Tome 163 (2014) no. 2, pp. 141-143.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider a conjecture of Erdős and Rosenfeld and a conjecture of Ruzsa when the number is a perfect square. In particular, we show that every perfect square $n$ can have at most five divisors between $\sqrt{n} - \sqrt[4]{n}\,(\log n)^{1/7}$ and $\sqrt{n} + \sqrt[4]{n}\,(\log n)^{1/7}$.
DOI : 10.4064/aa163-2-4
Keywords: consider conjecture erd rosenfeld conjecture ruzsa number perfect square particular every perfect square have five divisors between sqrt sqrt log sqrt sqrt log

Tsz Ho Chan 1

1 Department of Arts and Sciences Victory University 255 N. Highland Street Memphis, TN 38111, U.S.A.
@article{10_4064_aa163_2_4,
     author = {Tsz Ho Chan},
     title = {Factors of a perfect square},
     journal = {Acta Arithmetica},
     pages = {141--143},
     publisher = {mathdoc},
     volume = {163},
     number = {2},
     year = {2014},
     doi = {10.4064/aa163-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-4/}
}
TY  - JOUR
AU  - Tsz Ho Chan
TI  - Factors of a perfect square
JO  - Acta Arithmetica
PY  - 2014
SP  - 141
EP  - 143
VL  - 163
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-4/
DO  - 10.4064/aa163-2-4
LA  - en
ID  - 10_4064_aa163_2_4
ER  - 
%0 Journal Article
%A Tsz Ho Chan
%T Factors of a perfect square
%J Acta Arithmetica
%D 2014
%P 141-143
%V 163
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-4/
%R 10.4064/aa163-2-4
%G en
%F 10_4064_aa163_2_4
Tsz Ho Chan. Factors of a perfect square. Acta Arithmetica, Tome 163 (2014) no. 2, pp. 141-143. doi : 10.4064/aa163-2-4. http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-4/

Cité par Sources :