The distribution of Fourier coefficients of cusp forms over sparse sequences
Acta Arithmetica, Tome 163 (2014) no. 2, pp. 101-110
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\lambda_f(n)$ be the $n$th normalized Fourier
coefficient of a holomorphic Hecke eigenform $f(z)\in
S_{k}(\Gamma)$. We establish that
$\sum_{n \leq x}\lambda_f^2(n^j)=c_{j} x+O(x^{1-\frac{2}{(j+1)^2+1}})$
for $j=2,3,4,$ which improves the previous results. For $j=2$, we even establish a better result.
Keywords:
lambda nth normalized fourier coefficient holomorphic hecke eigenform gamma establish sum leq lambda frac which improves previous results even establish better result
Affiliations des auteurs :
Huixue Lao 1 ; Ayyadurai Sankaranarayanan 2
@article{10_4064_aa163_2_1,
author = {Huixue Lao and Ayyadurai Sankaranarayanan},
title = {The distribution of {Fourier} coefficients of cusp forms over sparse sequences},
journal = {Acta Arithmetica},
pages = {101--110},
publisher = {mathdoc},
volume = {163},
number = {2},
year = {2014},
doi = {10.4064/aa163-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-1/}
}
TY - JOUR AU - Huixue Lao AU - Ayyadurai Sankaranarayanan TI - The distribution of Fourier coefficients of cusp forms over sparse sequences JO - Acta Arithmetica PY - 2014 SP - 101 EP - 110 VL - 163 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-1/ DO - 10.4064/aa163-2-1 LA - en ID - 10_4064_aa163_2_1 ER -
%0 Journal Article %A Huixue Lao %A Ayyadurai Sankaranarayanan %T The distribution of Fourier coefficients of cusp forms over sparse sequences %J Acta Arithmetica %D 2014 %P 101-110 %V 163 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-1/ %R 10.4064/aa163-2-1 %G en %F 10_4064_aa163_2_1
Huixue Lao; Ayyadurai Sankaranarayanan. The distribution of Fourier coefficients of cusp forms over sparse sequences. Acta Arithmetica, Tome 163 (2014) no. 2, pp. 101-110. doi: 10.4064/aa163-2-1
Cité par Sources :