Proof of a conjecture of Hirschhorn and Sellers
on overpartitions
Acta Arithmetica, Tome 163 (2014) no. 1, pp. 59-69
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\bar{p}(n)$ denote the number of overpartitions of $n$. It was
conjectured by Hirschhorn and Sellers that $\bar{p}(40n+35)\equiv
0\ ({\rm mod\ } 40)$ for $n\geq 0$. Employing $2$-dissection
formulas of
theta functions due to Ramanujan, and Hirschhorn
and Sellers, we obtain a generating function for $\bar{p}(40n+35)$
modulo 5. Using the $(p, k)$-parametrization of theta functions
given by Alaca, Alaca and Williams, we prove the congruence
$\bar{p}(40n+35)\equiv
0\ ({\rm mod\ } 5)$ for $n\geq 0$. Combining this congruence and the
congruence
$\bar{p}(4n+3)\equiv 0\ ({\rm mod\ } 8)$ for $n\geq 0$ obtained
by Hirschhorn and Sellers, and Fortin, Jacob and
Mathieu, we confirm the conjecture of Hirschhorn and Sellers.
Keywords:
bar denote number overpartitions conjectured hirschhorn sellers bar equiv mod geq employing dissection formulas theta functions due ramanujan hirschhorn sellers obtain generating function bar modulo nbsp using parametrization theta functions given alaca alaca williams prove congruence bar equiv mod geq combining congruence congruence bar equiv mod geq obtained hirschhorn sellers fortin jacob mathieu confirm conjecture hirschhorn sellers
Affiliations des auteurs :
William Y. C. Chen 1 ; Ernest X. W. Xia 2
@article{10_4064_aa163_1_5,
author = {William Y. C. Chen and Ernest X. W. Xia},
title = {Proof of a conjecture of {Hirschhorn} and {Sellers
} on overpartitions},
journal = {Acta Arithmetica},
pages = {59--69},
publisher = {mathdoc},
volume = {163},
number = {1},
year = {2014},
doi = {10.4064/aa163-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-1-5/}
}
TY - JOUR AU - William Y. C. Chen AU - Ernest X. W. Xia TI - Proof of a conjecture of Hirschhorn and Sellers on overpartitions JO - Acta Arithmetica PY - 2014 SP - 59 EP - 69 VL - 163 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa163-1-5/ DO - 10.4064/aa163-1-5 LA - en ID - 10_4064_aa163_1_5 ER -
William Y. C. Chen; Ernest X. W. Xia. Proof of a conjecture of Hirschhorn and Sellers on overpartitions. Acta Arithmetica, Tome 163 (2014) no. 1, pp. 59-69. doi: 10.4064/aa163-1-5
Cité par Sources :