Proof of a conjecture of Hirschhorn and Sellers on overpartitions
Acta Arithmetica, Tome 163 (2014) no. 1, pp. 59-69.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\bar{p}(n)$ denote the number of overpartitions of $n$. It was conjectured by Hirschhorn and Sellers that $\bar{p}(40n+35)\equiv 0\ ({\rm mod\ } 40)$ for $n\geq 0$. Employing $2$-dissection formulas of theta functions due to Ramanujan, and Hirschhorn and Sellers, we obtain a generating function for $\bar{p}(40n+35)$ modulo 5. Using the $(p, k)$-parametrization of theta functions given by Alaca, Alaca and Williams, we prove the congruence $\bar{p}(40n+35)\equiv 0\ ({\rm mod\ } 5)$ for $n\geq 0$. Combining this congruence and the congruence $\bar{p}(4n+3)\equiv 0\ ({\rm mod\ } 8)$ for $n\geq 0$ obtained by Hirschhorn and Sellers, and Fortin, Jacob and Mathieu, we confirm the conjecture of Hirschhorn and Sellers.
DOI : 10.4064/aa163-1-5
Keywords: bar denote number overpartitions conjectured hirschhorn sellers bar equiv mod geq employing dissection formulas theta functions due ramanujan hirschhorn sellers obtain generating function bar modulo nbsp using parametrization theta functions given alaca alaca williams prove congruence bar equiv mod geq combining congruence congruence bar equiv mod geq obtained hirschhorn sellers fortin jacob mathieu confirm conjecture hirschhorn sellers

William Y. C. Chen 1 ; Ernest X. W. Xia 2

1 Center for Applied Mathematics Tianjin University Tianjin 300072, P.R. China
2 Department of Mathematics Jiangsu University Zhenjiang, Jiangsu 212013, P.R. China
@article{10_4064_aa163_1_5,
     author = {William Y. C. Chen and Ernest X. W. Xia},
     title = {Proof of a conjecture of {Hirschhorn} and {Sellers
} on overpartitions},
     journal = {Acta Arithmetica},
     pages = {59--69},
     publisher = {mathdoc},
     volume = {163},
     number = {1},
     year = {2014},
     doi = {10.4064/aa163-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-1-5/}
}
TY  - JOUR
AU  - William Y. C. Chen
AU  - Ernest X. W. Xia
TI  - Proof of a conjecture of Hirschhorn and Sellers
 on overpartitions
JO  - Acta Arithmetica
PY  - 2014
SP  - 59
EP  - 69
VL  - 163
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa163-1-5/
DO  - 10.4064/aa163-1-5
LA  - en
ID  - 10_4064_aa163_1_5
ER  - 
%0 Journal Article
%A William Y. C. Chen
%A Ernest X. W. Xia
%T Proof of a conjecture of Hirschhorn and Sellers
 on overpartitions
%J Acta Arithmetica
%D 2014
%P 59-69
%V 163
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa163-1-5/
%R 10.4064/aa163-1-5
%G en
%F 10_4064_aa163_1_5
William Y. C. Chen; Ernest X. W. Xia. Proof of a conjecture of Hirschhorn and Sellers
 on overpartitions. Acta Arithmetica, Tome 163 (2014) no. 1, pp. 59-69. doi : 10.4064/aa163-1-5. http://geodesic.mathdoc.fr/articles/10.4064/aa163-1-5/

Cité par Sources :