The mantissa distribution of the primorial numbers
Acta Arithmetica, Tome 163 (2014) no. 1, pp. 45-58
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the sequence of mantissas of the primorial numbers $P_n$, defined as the product of the first $n$ prime numbers, is distributed following Benford's law. This is done by proving that the values of the first Chebyshev function at prime numbers are uniformly distributed modulo 1. We provide a convergence rate estimate. We also briefly treat some other sequences defined in the same way as $P_n$.
Keywords:
sequence mantissas primorial numbers defined product first prime numbers distributed following benfords law done proving values first chebyshev function prime numbers uniformly distributed modulo provide convergence rate estimate briefly treat other sequences defined
Affiliations des auteurs :
Bruno Massé 1 ; Dominique Schneider 1
@article{10_4064_aa163_1_4,
author = {Bruno Mass\'e and Dominique Schneider},
title = {The mantissa distribution of the primorial numbers},
journal = {Acta Arithmetica},
pages = {45--58},
publisher = {mathdoc},
volume = {163},
number = {1},
year = {2014},
doi = {10.4064/aa163-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-1-4/}
}
TY - JOUR AU - Bruno Massé AU - Dominique Schneider TI - The mantissa distribution of the primorial numbers JO - Acta Arithmetica PY - 2014 SP - 45 EP - 58 VL - 163 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa163-1-4/ DO - 10.4064/aa163-1-4 LA - en ID - 10_4064_aa163_1_4 ER -
Bruno Massé; Dominique Schneider. The mantissa distribution of the primorial numbers. Acta Arithmetica, Tome 163 (2014) no. 1, pp. 45-58. doi: 10.4064/aa163-1-4
Cité par Sources :