A functional relation for Tornheim's double zeta functions
Acta Arithmetica, Tome 162 (2014) no. 4, pp. 337-354
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We generalize the partial fraction decomposition which is fundamental in the theory of multiple zeta values, and prove a relation between Tornheim's double zeta functions of three complex variables. As applications, we give new integral representations of several zeta functions, an extension of the parity result to the whole domain of convergence, concrete expressions of Tornheim's double zeta function at non-positive integers and some results on the behavior of a certain Witten's zeta function at each integer. As an appendix, we prove a functional equation for Euler's double zeta function.
Keywords:
generalize partial fraction decomposition which fundamental theory multiple zeta values prove relation between tornheims double zeta functions three complex variables applications integral representations several zeta functions extension parity result whole domain convergence concrete expressions tornheims double zeta function non positive integers results behavior certain wittens zeta function each integer appendix prove functional equation eulers double zeta function
Affiliations des auteurs :
Kazuhiro Onodera 1
@article{10_4064_aa162_4_2,
author = {Kazuhiro Onodera},
title = {A functional relation for {Tornheim's} double zeta functions},
journal = {Acta Arithmetica},
pages = {337--354},
publisher = {mathdoc},
volume = {162},
number = {4},
year = {2014},
doi = {10.4064/aa162-4-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-4-2/}
}
Kazuhiro Onodera. A functional relation for Tornheim's double zeta functions. Acta Arithmetica, Tome 162 (2014) no. 4, pp. 337-354. doi: 10.4064/aa162-4-2
Cité par Sources :