On the concentration of certain additive functions
Acta Arithmetica, Tome 162 (2014) no. 3, pp. 223-241
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the concentration of the distribution of an additive function $f$ when the sequence of prime values of $f$ decays fast and has good spacing properties. In particular, we prove a conjecture by Erdős and Kátai on the concentration of $f(n)=\sum_{p|n}(\log p)^{-c}$ when $c>1$.
Keywords:
study concentration distribution additive function sequence prime values decays fast has spacing properties particular prove conjecture erd tai concentration sum log c
Affiliations des auteurs :
Dimitris Koukoulopoulos 1
@article{10_4064_aa162_3_2,
author = {Dimitris Koukoulopoulos},
title = {On the concentration of certain additive functions},
journal = {Acta Arithmetica},
pages = {223--241},
publisher = {mathdoc},
volume = {162},
number = {3},
year = {2014},
doi = {10.4064/aa162-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-3-2/}
}
Dimitris Koukoulopoulos. On the concentration of certain additive functions. Acta Arithmetica, Tome 162 (2014) no. 3, pp. 223-241. doi: 10.4064/aa162-3-2
Cité par Sources :