The digamma function, Euler–Lehmer constants
and their $p$-adic counterparts
Acta Arithmetica, Tome 162 (2014) no. 2, pp. 197-208
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The goal of this article is twofold. First, we extend a result of Murty and Saradha (2007) related to the digamma function at rational arguments. Further, we extend another result of the same authors (2008) about the nature of $p$-adic Euler–Lehmer constants.
Keywords:
article twofold first extend result murty saradha related digamma function rational arguments further extend another result authors about nature p adic euler lehmer constants
Affiliations des auteurs :
T. Chatterjee 1 ; S. Gun 2
@article{10_4064_aa162_2_4,
author = {T. Chatterjee and S. Gun},
title = {The digamma function, {Euler{\textendash}Lehmer} constants
and their $p$-adic counterparts},
journal = {Acta Arithmetica},
pages = {197--208},
publisher = {mathdoc},
volume = {162},
number = {2},
year = {2014},
doi = {10.4064/aa162-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-4/}
}
TY - JOUR AU - T. Chatterjee AU - S. Gun TI - The digamma function, Euler–Lehmer constants and their $p$-adic counterparts JO - Acta Arithmetica PY - 2014 SP - 197 EP - 208 VL - 162 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-4/ DO - 10.4064/aa162-2-4 LA - en ID - 10_4064_aa162_2_4 ER -
T. Chatterjee; S. Gun. The digamma function, Euler–Lehmer constants and their $p$-adic counterparts. Acta Arithmetica, Tome 162 (2014) no. 2, pp. 197-208. doi: 10.4064/aa162-2-4
Cité par Sources :