The digamma function, Euler–Lehmer constants and their $p$-adic counterparts
Acta Arithmetica, Tome 162 (2014) no. 2, pp. 197-208.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The goal of this article is twofold. First, we extend a result of Murty and Saradha (2007) related to the digamma function at rational arguments. Further, we extend another result of the same authors (2008) about the nature of $p$-adic Euler–Lehmer constants.
DOI : 10.4064/aa162-2-4
Keywords: article twofold first extend result murty saradha related digamma function rational arguments further extend another result authors about nature p adic euler lehmer constants

T. Chatterjee 1 ; S. Gun 2

1 Department of Mathematics Queen's University Kingston, ON K7L3N6, Canada
2 Institute for Mathematical Sciences C.I.T. Campus, 4th Cross Street Taramani Chennai, 600 113 Tamil Nadu, India
@article{10_4064_aa162_2_4,
     author = {T. Chatterjee and S. Gun},
     title = {The digamma function, {Euler{\textendash}Lehmer} constants
 and their $p$-adic counterparts},
     journal = {Acta Arithmetica},
     pages = {197--208},
     publisher = {mathdoc},
     volume = {162},
     number = {2},
     year = {2014},
     doi = {10.4064/aa162-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-4/}
}
TY  - JOUR
AU  - T. Chatterjee
AU  - S. Gun
TI  - The digamma function, Euler–Lehmer constants
 and their $p$-adic counterparts
JO  - Acta Arithmetica
PY  - 2014
SP  - 197
EP  - 208
VL  - 162
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-4/
DO  - 10.4064/aa162-2-4
LA  - en
ID  - 10_4064_aa162_2_4
ER  - 
%0 Journal Article
%A T. Chatterjee
%A S. Gun
%T The digamma function, Euler–Lehmer constants
 and their $p$-adic counterparts
%J Acta Arithmetica
%D 2014
%P 197-208
%V 162
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-4/
%R 10.4064/aa162-2-4
%G en
%F 10_4064_aa162_2_4
T. Chatterjee; S. Gun. The digamma function, Euler–Lehmer constants
 and their $p$-adic counterparts. Acta Arithmetica, Tome 162 (2014) no. 2, pp. 197-208. doi : 10.4064/aa162-2-4. http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-4/

Cité par Sources :