A ternary Diophantine inequality over primes
Acta Arithmetica, Tome 162 (2014) no. 2, pp. 159-196
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $1 c 10/9$. For large real numbers $R>0$, and a small constant $\eta >0$, the inequality $$ | p_1^c+p_2^c+p_3^c - R| R^{-\eta } $$ holds for many prime triples. This improves work of Kumchev [Acta Arith. 89 (1999)].
Keywords:
large real numbers small constant eta inequality eta holds many prime triples improves work kumchev acta arith
Affiliations des auteurs :
Roger Baker 1 ; Andreas Weingartner 2
@article{10_4064_aa162_2_3,
author = {Roger Baker and Andreas Weingartner},
title = {A ternary {Diophantine} inequality over primes},
journal = {Acta Arithmetica},
pages = {159--196},
publisher = {mathdoc},
volume = {162},
number = {2},
year = {2014},
doi = {10.4064/aa162-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-3/}
}
Roger Baker; Andreas Weingartner. A ternary Diophantine inequality over primes. Acta Arithmetica, Tome 162 (2014) no. 2, pp. 159-196. doi: 10.4064/aa162-2-3
Cité par Sources :