A ternary Diophantine inequality over primes
Acta Arithmetica, Tome 162 (2014) no. 2, pp. 159-196.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $1 c 10/9$. For large real numbers $R>0$, and a small constant $\eta >0$, the inequality $$ | p_1^c+p_2^c+p_3^c - R| R^{-\eta } $$ holds for many prime triples. This improves work of Kumchev [Acta Arith. 89 (1999)].
DOI : 10.4064/aa162-2-3
Keywords: large real numbers small constant eta inequality eta holds many prime triples improves work kumchev acta arith

Roger Baker 1 ; Andreas Weingartner 2

1 Department of Mathematics Brigham Young University Provo, UT 84602, U.S.A.
2 Department of Mathematics Southern Utah University Cedar City, UT 84720, U.S.A.
@article{10_4064_aa162_2_3,
     author = {Roger Baker and Andreas Weingartner},
     title = {A ternary {Diophantine} inequality over primes},
     journal = {Acta Arithmetica},
     pages = {159--196},
     publisher = {mathdoc},
     volume = {162},
     number = {2},
     year = {2014},
     doi = {10.4064/aa162-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-3/}
}
TY  - JOUR
AU  - Roger Baker
AU  - Andreas Weingartner
TI  - A ternary Diophantine inequality over primes
JO  - Acta Arithmetica
PY  - 2014
SP  - 159
EP  - 196
VL  - 162
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-3/
DO  - 10.4064/aa162-2-3
LA  - en
ID  - 10_4064_aa162_2_3
ER  - 
%0 Journal Article
%A Roger Baker
%A Andreas Weingartner
%T A ternary Diophantine inequality over primes
%J Acta Arithmetica
%D 2014
%P 159-196
%V 162
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-3/
%R 10.4064/aa162-2-3
%G en
%F 10_4064_aa162_2_3
Roger Baker; Andreas Weingartner. A ternary Diophantine inequality over primes. Acta Arithmetica, Tome 162 (2014) no. 2, pp. 159-196. doi : 10.4064/aa162-2-3. http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-3/

Cité par Sources :