On some mean value results for the zeta-function
in short intervals
Acta Arithmetica, Tome 162 (2014) no. 2, pp. 141-158
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\varDelta(x)$ denote the error term in the Dirichlet
divisor problem, and let $E(T)$ denote the error term in the asymptotic
formula for the mean square of $|\zeta(1/2+it)|$. If
$E^*(t) := E(t) - 2\pi\varDelta^*(t/(2\pi))$ with $\varDelta^*(x) =
-\varDelta(x) + 2\varDelta (2x) - \frac12\varDelta (4x)$ and
$\int_0^T E^*(t)\,d t = \frac{3}{4}\pi T + R(T)$, then we obtain
a number of results involving the moments of $|\zeta(1/2+it)|$
in short intervals, by connecting
them to the moments of $E^*(T)$ and $R(T)$ in short intervals. Upper bounds
and asymptotic formulae for integrals
of the form
$$
\int_T^{2T}\Big(\int_{t-H}^{t+H}|\zeta(1/2+iu|^2\,d u\Big)^k\,d t\quad\ (k\in\mathbb{N},\, 1 \ll H \le T)
$$
are also treated.
Keywords:
vardelta denote error term dirichlet divisor problem denote error term asymptotic formula mean square zeta * vardelta * vardelta * vardelta vardelta frac vardelta int * frac obtain number results involving moments zeta short intervals connecting moments * short intervals upper bounds asymptotic formulae integrals form int int t h zeta quad mathbb treated
Affiliations des auteurs :
Aleksandar Ivić 1
@article{10_4064_aa162_2_2,
author = {Aleksandar Ivi\'c},
title = {On some mean value results for the zeta-function
in short intervals},
journal = {Acta Arithmetica},
pages = {141--158},
publisher = {mathdoc},
volume = {162},
number = {2},
year = {2014},
doi = {10.4064/aa162-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-2/}
}
TY - JOUR AU - Aleksandar Ivić TI - On some mean value results for the zeta-function in short intervals JO - Acta Arithmetica PY - 2014 SP - 141 EP - 158 VL - 162 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-2/ DO - 10.4064/aa162-2-2 LA - en ID - 10_4064_aa162_2_2 ER -
Aleksandar Ivić. On some mean value results for the zeta-function in short intervals. Acta Arithmetica, Tome 162 (2014) no. 2, pp. 141-158. doi: 10.4064/aa162-2-2
Cité par Sources :