On some mean value results for the zeta-function in short intervals
Acta Arithmetica, Tome 162 (2014) no. 2, pp. 141-158.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\varDelta(x)$ denote the error term in the Dirichlet divisor problem, and let $E(T)$ denote the error term in the asymptotic formula for the mean square of $|\zeta(1/2+it)|$. If $E^*(t) := E(t) - 2\pi\varDelta^*(t/(2\pi))$ with $\varDelta^*(x) = -\varDelta(x) + 2\varDelta (2x) - \frac12\varDelta (4x)$ and $\int_0^T E^*(t)\,d t = \frac{3}{4}\pi T + R(T)$, then we obtain a number of results involving the moments of $|\zeta(1/2+it)|$ in short intervals, by connecting them to the moments of $E^*(T)$ and $R(T)$ in short intervals. Upper bounds and asymptotic formulae for integrals of the form $$ \int_T^{2T}\Big(\int_{t-H}^{t+H}|\zeta(1/2+iu|^2\,d u\Big)^k\,d t\quad\ (k\in\mathbb{N},\, 1 \ll H \le T) $$ are also treated.
DOI : 10.4064/aa162-2-2
Keywords: vardelta denote error term dirichlet divisor problem denote error term asymptotic formula mean square zeta * vardelta * vardelta * vardelta vardelta frac vardelta int * frac obtain number results involving moments zeta short intervals connecting moments * short intervals upper bounds asymptotic formulae integrals form int int t h zeta quad mathbb treated

Aleksandar Ivić 1

1 Katedra Matematike RGF-a Universiteta u Beogradu Dušina 7 11000 Beograd, Serbia
@article{10_4064_aa162_2_2,
     author = {Aleksandar Ivi\'c},
     title = {On some mean value results for the zeta-function
 in short intervals},
     journal = {Acta Arithmetica},
     pages = {141--158},
     publisher = {mathdoc},
     volume = {162},
     number = {2},
     year = {2014},
     doi = {10.4064/aa162-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-2/}
}
TY  - JOUR
AU  - Aleksandar Ivić
TI  - On some mean value results for the zeta-function
 in short intervals
JO  - Acta Arithmetica
PY  - 2014
SP  - 141
EP  - 158
VL  - 162
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-2/
DO  - 10.4064/aa162-2-2
LA  - en
ID  - 10_4064_aa162_2_2
ER  - 
%0 Journal Article
%A Aleksandar Ivić
%T On some mean value results for the zeta-function
 in short intervals
%J Acta Arithmetica
%D 2014
%P 141-158
%V 162
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-2/
%R 10.4064/aa162-2-2
%G en
%F 10_4064_aa162_2_2
Aleksandar Ivić. On some mean value results for the zeta-function
 in short intervals. Acta Arithmetica, Tome 162 (2014) no. 2, pp. 141-158. doi : 10.4064/aa162-2-2. http://geodesic.mathdoc.fr/articles/10.4064/aa162-2-2/

Cité par Sources :