Optimal $\mathcal {L}_{2}$ discrepancy bounds for
higher order digital sequences over the finite field $\mathbb {F}_{2}$
Acta Arithmetica, Tome 162 (2014) no. 1, pp. 65-99
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Affiliations des auteurs :
Josef Dick 1 ; Friedrich Pillichshammer 2
@article{10_4064_aa162_1_4,
author = {Josef Dick and Friedrich Pillichshammer},
title = {Optimal $\mathcal {L}_{2}$ discrepancy bounds for
higher order digital sequences over the finite field $\mathbb {F}_{2}$},
journal = {Acta Arithmetica},
pages = {65--99},
publisher = {mathdoc},
volume = {162},
number = {1},
year = {2014},
doi = {10.4064/aa162-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-4/}
}
TY - JOUR
AU - Josef Dick
AU - Friedrich Pillichshammer
TI - Optimal $\mathcal {L}_{2}$ discrepancy bounds for
higher order digital sequences over the finite field $\mathbb {F}_{2}$
JO - Acta Arithmetica
PY - 2014
SP - 65
EP - 99
VL - 162
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-4/
DO - 10.4064/aa162-1-4
LA - en
ID - 10_4064_aa162_1_4
ER -
%0 Journal Article
%A Josef Dick
%A Friedrich Pillichshammer
%T Optimal $\mathcal {L}_{2}$ discrepancy bounds for
higher order digital sequences over the finite field $\mathbb {F}_{2}$
%J Acta Arithmetica
%D 2014
%P 65-99
%V 162
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-4/
%R 10.4064/aa162-1-4
%G en
%F 10_4064_aa162_1_4
Josef Dick; Friedrich Pillichshammer. Optimal $\mathcal {L}_{2}$ discrepancy bounds for
higher order digital sequences over the finite field $\mathbb {F}_{2}$. Acta Arithmetica, Tome 162 (2014) no. 1, pp. 65-99. doi: 10.4064/aa162-1-4
Cité par Sources :