Optimal $\mathcal {L}_{2}$ discrepancy bounds for higher order digital sequences over the finite field $\mathbb {F}_{2}$
Acta Arithmetica, Tome 162 (2014) no. 1, pp. 65-99.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/aa162-1-4

Josef Dick 1 ; Friedrich Pillichshammer 2

1 School of Mathematics and Statistics The University of New South Wales Sydney, NSW 2052, Australia
2 Institut für Finanzmathematik Johannes Kepler Universität Linz Altenbergerstraße 69 A-4040 Linz, Austria
@article{10_4064_aa162_1_4,
     author = {Josef Dick and Friedrich Pillichshammer},
     title = {Optimal $\mathcal {L}_{2}$ discrepancy bounds for
 higher order digital sequences over the finite field $\mathbb {F}_{2}$},
     journal = {Acta Arithmetica},
     pages = {65--99},
     publisher = {mathdoc},
     volume = {162},
     number = {1},
     year = {2014},
     doi = {10.4064/aa162-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-4/}
}
TY  - JOUR
AU  - Josef Dick
AU  - Friedrich Pillichshammer
TI  - Optimal $\mathcal {L}_{2}$ discrepancy bounds for
 higher order digital sequences over the finite field $\mathbb {F}_{2}$
JO  - Acta Arithmetica
PY  - 2014
SP  - 65
EP  - 99
VL  - 162
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-4/
DO  - 10.4064/aa162-1-4
LA  - en
ID  - 10_4064_aa162_1_4
ER  - 
%0 Journal Article
%A Josef Dick
%A Friedrich Pillichshammer
%T Optimal $\mathcal {L}_{2}$ discrepancy bounds for
 higher order digital sequences over the finite field $\mathbb {F}_{2}$
%J Acta Arithmetica
%D 2014
%P 65-99
%V 162
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-4/
%R 10.4064/aa162-1-4
%G en
%F 10_4064_aa162_1_4
Josef Dick; Friedrich Pillichshammer. Optimal $\mathcal {L}_{2}$ discrepancy bounds for
 higher order digital sequences over the finite field $\mathbb {F}_{2}$. Acta Arithmetica, Tome 162 (2014) no. 1, pp. 65-99. doi : 10.4064/aa162-1-4. http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-4/

Cité par Sources :