Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Josef Dick 1 ; Friedrich Pillichshammer 2
@article{10_4064_aa162_1_4, author = {Josef Dick and Friedrich Pillichshammer}, title = {Optimal $\mathcal {L}_{2}$ discrepancy bounds for higher order digital sequences over the finite field $\mathbb {F}_{2}$}, journal = {Acta Arithmetica}, pages = {65--99}, publisher = {mathdoc}, volume = {162}, number = {1}, year = {2014}, doi = {10.4064/aa162-1-4}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-4/} }
TY - JOUR AU - Josef Dick AU - Friedrich Pillichshammer TI - Optimal $\mathcal {L}_{2}$ discrepancy bounds for higher order digital sequences over the finite field $\mathbb {F}_{2}$ JO - Acta Arithmetica PY - 2014 SP - 65 EP - 99 VL - 162 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-4/ DO - 10.4064/aa162-1-4 LA - en ID - 10_4064_aa162_1_4 ER -
%0 Journal Article %A Josef Dick %A Friedrich Pillichshammer %T Optimal $\mathcal {L}_{2}$ discrepancy bounds for higher order digital sequences over the finite field $\mathbb {F}_{2}$ %J Acta Arithmetica %D 2014 %P 65-99 %V 162 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-4/ %R 10.4064/aa162-1-4 %G en %F 10_4064_aa162_1_4
Josef Dick; Friedrich Pillichshammer. Optimal $\mathcal {L}_{2}$ discrepancy bounds for higher order digital sequences over the finite field $\mathbb {F}_{2}$. Acta Arithmetica, Tome 162 (2014) no. 1, pp. 65-99. doi : 10.4064/aa162-1-4. http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-4/
Cité par Sources :