A class of permutation trinomials over finite fields
Acta Arithmetica, Tome 162 (2014) no. 1, pp. 51-64.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $q>2$ be a prime power and $f=-{\tt x}+t{\tt x}^q+{\tt x}^{2q-1}$, where $t\in \mathbb F_q^*$. We prove that $f$ is a permutation polynomial of $\mathbb F_{q^2}$ if and only if one of the following occurs: (i) $q$ is even and $\text {Tr}_{q/2}({{1}/t})=0$; (ii) $q\equiv 1\ ({\rm mod} 8)$ and $t^2=-2$.
DOI : 10.4064/aa162-1-3
Keywords: prime power q where mathbb * prove permutation polynomial mathbb only following occurs nbsp even text nbsp equiv mod nbsp

Xiang-dong Hou 1

1 Department of Mathematics and Statistics University of South Florida Tampa, FL 33620, U.S.A.
@article{10_4064_aa162_1_3,
     author = {Xiang-dong Hou},
     title = {A class of permutation trinomials over finite fields},
     journal = {Acta Arithmetica},
     pages = {51--64},
     publisher = {mathdoc},
     volume = {162},
     number = {1},
     year = {2014},
     doi = {10.4064/aa162-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-3/}
}
TY  - JOUR
AU  - Xiang-dong Hou
TI  - A class of permutation trinomials over finite fields
JO  - Acta Arithmetica
PY  - 2014
SP  - 51
EP  - 64
VL  - 162
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-3/
DO  - 10.4064/aa162-1-3
LA  - en
ID  - 10_4064_aa162_1_3
ER  - 
%0 Journal Article
%A Xiang-dong Hou
%T A class of permutation trinomials over finite fields
%J Acta Arithmetica
%D 2014
%P 51-64
%V 162
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-3/
%R 10.4064/aa162-1-3
%G en
%F 10_4064_aa162_1_3
Xiang-dong Hou. A class of permutation trinomials over finite fields. Acta Arithmetica, Tome 162 (2014) no. 1, pp. 51-64. doi : 10.4064/aa162-1-3. http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-3/

Cité par Sources :