A class of permutation trinomials over finite fields
Acta Arithmetica, Tome 162 (2014) no. 1, pp. 51-64
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $q>2$ be a prime power and $f=-{\tt x}+t{\tt x}^q+{\tt x}^{2q-1}$, where $t\in \mathbb F_q^*$. We prove that $f$ is a permutation polynomial of $\mathbb F_{q^2}$ if and only if one of the following occurs: (i) $q$ is even and $\text {Tr}_{q/2}({{1}/t})=0$; (ii) $q\equiv 1\ ({\rm mod} 8)$ and $t^2=-2$.
Keywords:
prime power q where mathbb * prove permutation polynomial mathbb only following occurs nbsp even text nbsp equiv mod nbsp
Affiliations des auteurs :
Xiang-dong Hou 1
@article{10_4064_aa162_1_3,
author = {Xiang-dong Hou},
title = {A class of permutation trinomials over finite fields},
journal = {Acta Arithmetica},
pages = {51--64},
publisher = {mathdoc},
volume = {162},
number = {1},
year = {2014},
doi = {10.4064/aa162-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-3/}
}
Xiang-dong Hou. A class of permutation trinomials over finite fields. Acta Arithmetica, Tome 162 (2014) no. 1, pp. 51-64. doi: 10.4064/aa162-1-3
Cité par Sources :