A note on two linear forms
Acta Arithmetica, Tome 162 (2014) no. 1, pp. 43-50.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a result on approximations to a real number $\theta $ by algebraic numbers of degree $\le 2$ in the case when we have certain information about the uniform Diophantine exponent $\hat{\omega }$ for the linear form $x_0 +\theta x_1+\theta ^2x_2$.
DOI : 10.4064/aa162-1-2
Keywords: prove result approximations real number theta algebraic numbers degree have certain information about uniform diophantine exponent hat omega linear form theta theta

Nikolay Moshchevitin 1

1 Department of Number Theory Faculty of Mathematics and Mechanics Moscow Lomonosov State University Leninskie Gory 1 119991 Moscow, Russia
@article{10_4064_aa162_1_2,
     author = {Nikolay Moshchevitin},
     title = {A note on two linear forms},
     journal = {Acta Arithmetica},
     pages = {43--50},
     publisher = {mathdoc},
     volume = {162},
     number = {1},
     year = {2014},
     doi = {10.4064/aa162-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-2/}
}
TY  - JOUR
AU  - Nikolay Moshchevitin
TI  - A note on two linear forms
JO  - Acta Arithmetica
PY  - 2014
SP  - 43
EP  - 50
VL  - 162
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-2/
DO  - 10.4064/aa162-1-2
LA  - en
ID  - 10_4064_aa162_1_2
ER  - 
%0 Journal Article
%A Nikolay Moshchevitin
%T A note on two linear forms
%J Acta Arithmetica
%D 2014
%P 43-50
%V 162
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-2/
%R 10.4064/aa162-1-2
%G en
%F 10_4064_aa162_1_2
Nikolay Moshchevitin. A note on two linear forms. Acta Arithmetica, Tome 162 (2014) no. 1, pp. 43-50. doi : 10.4064/aa162-1-2. http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-2/

Cité par Sources :