A note on two linear forms
Acta Arithmetica, Tome 162 (2014) no. 1, pp. 43-50
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a result on approximations to a real number $\theta $ by algebraic numbers of degree $\le 2$ in the case when we have certain information about the uniform Diophantine exponent $\hat{\omega }$ for the linear form $x_0 +\theta x_1+\theta ^2x_2$.
Keywords:
prove result approximations real number theta algebraic numbers degree have certain information about uniform diophantine exponent hat omega linear form theta theta
Affiliations des auteurs :
Nikolay Moshchevitin 1
@article{10_4064_aa162_1_2,
author = {Nikolay Moshchevitin},
title = {A note on two linear forms},
journal = {Acta Arithmetica},
pages = {43--50},
publisher = {mathdoc},
volume = {162},
number = {1},
year = {2014},
doi = {10.4064/aa162-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-2/}
}
Nikolay Moshchevitin. A note on two linear forms. Acta Arithmetica, Tome 162 (2014) no. 1, pp. 43-50. doi: 10.4064/aa162-1-2
Cité par Sources :