Koecher–Maass series of a certain half-integral weight modular form related to the Duke–Imamoḡlu–Ikeda lift
Acta Arithmetica, Tome 162 (2014) no. 1, pp. 1-42.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $k$ and $n$ be positive even integers. For a cuspidal Hecke eigenform $h$ in the Kohnen plus space of weight $k-n/2+1/2$ for $\varGamma _0(4),$ let $f$ be the corresponding primitive form of weight $2k-n$ for ${SL}_2(\mathbb {Z} )$ under the Shimura correspondence, and $I_n(h)$ the Duke–Imamoḡlu–Ikeda lift of $h$ to the space of cusp forms of weight $k$ for $Sp_n(\mathbb {Z} )$. Moreover, let $\phi _{I_n(h),1}$ be the first Fourier–Jacobi coefficient of $I_n(h)$, and $\sigma _{n-1}(\phi _{I_n(h),1})$ be the cusp form in the generalized Kohnen plus space of weight $k-1/2$ corresponding to $\phi _{I_n(h),1}$ under the Ibukiyama isomorphism. We give an explicit formula for the Koecher–Maass series $L(s,\sigma _{n-1}(\phi _{I_n(h),1}))$ of $\sigma _{n-1}(\phi _{I_n(h),1})$ expressed in terms of the usual $L$-functions of $h$ and $f$.
DOI : 10.4064/aa162-1-1
Keywords: positive even integers cuspidal hecke eigenform kohnen plus space weight k n vargamma corresponding primitive form weight k n mathbb under shimura correspondence duke imamo ikeda lift space cusp forms weight mathbb moreover phi first fourier jacobi coefficient sigma n phi cusp form generalized kohnen plus space weight k corresponding phi under ibukiyama isomorphism explicit formula koecher maass series sigma n phi sigma n phi expressed terms usual l functions

Hidenori Katsurada 1 ; Hisa-aki Kawamura 2

1 Muroran Institute of Technology Mizumoto 27-1 Muroran, 050-8585, Japan
2 Department of Mathematics Hokkaido University Kita 10, Nishi 8, Kita-Ku Sapporo, 060-0810, Japan and Department of Mathematics Hiroshima University 1-7-1 Kagamiyama Higashi-Hiroshima, 739-8521, Japan
@article{10_4064_aa162_1_1,
     author = {Hidenori Katsurada and Hisa-aki Kawamura},
     title = {Koecher{\textendash}Maass series of a certain half-integral weight modular form related to the {Duke{\textendash}Imamoḡlu{\textendash}Ikeda} lift},
     journal = {Acta Arithmetica},
     pages = {1--42},
     publisher = {mathdoc},
     volume = {162},
     number = {1},
     year = {2014},
     doi = {10.4064/aa162-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-1/}
}
TY  - JOUR
AU  - Hidenori Katsurada
AU  - Hisa-aki Kawamura
TI  - Koecher–Maass series of a certain half-integral weight modular form related to the Duke–Imamoḡlu–Ikeda lift
JO  - Acta Arithmetica
PY  - 2014
SP  - 1
EP  - 42
VL  - 162
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-1/
DO  - 10.4064/aa162-1-1
LA  - en
ID  - 10_4064_aa162_1_1
ER  - 
%0 Journal Article
%A Hidenori Katsurada
%A Hisa-aki Kawamura
%T Koecher–Maass series of a certain half-integral weight modular form related to the Duke–Imamoḡlu–Ikeda lift
%J Acta Arithmetica
%D 2014
%P 1-42
%V 162
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-1/
%R 10.4064/aa162-1-1
%G en
%F 10_4064_aa162_1_1
Hidenori Katsurada; Hisa-aki Kawamura. Koecher–Maass series of a certain half-integral weight modular form related to the Duke–Imamoḡlu–Ikeda lift. Acta Arithmetica, Tome 162 (2014) no. 1, pp. 1-42. doi : 10.4064/aa162-1-1. http://geodesic.mathdoc.fr/articles/10.4064/aa162-1-1/

Cité par Sources :