A lower bound of Ruzsa’s number related to the Erdős–Turán conjecture
Acta Arithmetica, Tome 180 (2017) no. 2, pp. 161-169.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a set $A\subseteq \mathbb{N}$ and $n\in \mathbb{N}$, let $R_A(n)$ denote the number of ordered pairs $(a,a’)\in A\times A$ such that $a+a’=n$. The celebrated Erdős–Turán conjecture says that if $R_A(n)\ge 1$ for all sufficiently large integers $n$, then the representation function $R_A(n)$ cannot be bounded. For any positive integer $m$, Ruzsa’s number $R_m$ is defined to be the least positive integer $r$ such that there exists a set $A\subseteq \mathbb{Z}_m$ with $1\le R_A(n)\le r$ for all $n\in \mathbb{Z}_m$. In 2008, Chen proved that $R_{m}\le 288$ for all positive integers $m$. In this paper, we prove that $R_m\ge 6$ for all integers $m\ge 36$. We also determine all values of $R_m$ when $m\le 35$.
DOI : 10.4064/aa161227-27-4
Keywords: set subseteq mathbb mathbb denote number ordered pairs times celebrated erd tur conjecture says sufficiently large integers nbsp representation function cannot bounded positive integer nbsp ruzsa number defined least positive integer there exists set subseteq mathbb mathbb nbsp chen proved positive integers nbsp paper prove integers determine values

Csaba Sándor 1 ; Quan-Hui Yang 2

1 Department of Stochastics Budapest University of Technology and Economics H-1529 B.O. Box Budapest, Hungary
2 School of Mathematics and Statistics Nanjing University of Information Science and Technology Nanjing 210044, China
@article{10_4064_aa161227_27_4,
     author = {Csaba S\'andor and Quan-Hui Yang},
     title = {A lower bound of {Ruzsa{\textquoteright}s} number related to the {Erd\H{o}s{\textendash}Tur\'an} conjecture},
     journal = {Acta Arithmetica},
     pages = {161--169},
     publisher = {mathdoc},
     volume = {180},
     number = {2},
     year = {2017},
     doi = {10.4064/aa161227-27-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161227-27-4/}
}
TY  - JOUR
AU  - Csaba Sándor
AU  - Quan-Hui Yang
TI  - A lower bound of Ruzsa’s number related to the Erdős–Turán conjecture
JO  - Acta Arithmetica
PY  - 2017
SP  - 161
EP  - 169
VL  - 180
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa161227-27-4/
DO  - 10.4064/aa161227-27-4
LA  - en
ID  - 10_4064_aa161227_27_4
ER  - 
%0 Journal Article
%A Csaba Sándor
%A Quan-Hui Yang
%T A lower bound of Ruzsa’s number related to the Erdős–Turán conjecture
%J Acta Arithmetica
%D 2017
%P 161-169
%V 180
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa161227-27-4/
%R 10.4064/aa161227-27-4
%G en
%F 10_4064_aa161227_27_4
Csaba Sándor; Quan-Hui Yang. A lower bound of Ruzsa’s number related to the Erdős–Turán conjecture. Acta Arithmetica, Tome 180 (2017) no. 2, pp. 161-169. doi : 10.4064/aa161227-27-4. http://geodesic.mathdoc.fr/articles/10.4064/aa161227-27-4/

Cité par Sources :