A lower bound of Ruzsa’s number related to the Erdős–Turán conjecture
Acta Arithmetica, Tome 180 (2017) no. 2, pp. 161-169
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a set $A\subseteq \mathbb{N}$ and $n\in \mathbb{N}$, let $R_A(n)$ denote the number of ordered pairs $(a,a’)\in A\times A$ such that $a+a’=n$. The
celebrated Erdős–Turán conjecture says that if $R_A(n)\ge
1$ for all sufficiently large integers $n$, then the
representation function $R_A(n)$ cannot be bounded. For any
positive integer $m$, Ruzsa’s number $R_m$ is defined to be the
least positive integer $r$ such that there exists a set
$A\subseteq \mathbb{Z}_m$ with $1\le R_A(n)\le r$ for all $n\in
\mathbb{Z}_m$. In 2008, Chen proved that $R_{m}\le 288$ for all
positive integers $m$. In this paper, we prove that $R_m\ge 6$ for
all integers $m\ge 36$. We also determine all values of $R_m$ when
$m\le 35$.
Keywords:
set subseteq mathbb mathbb denote number ordered pairs times celebrated erd tur conjecture says sufficiently large integers nbsp representation function cannot bounded positive integer nbsp ruzsa number defined least positive integer there exists set subseteq mathbb mathbb nbsp chen proved positive integers nbsp paper prove integers determine values
Affiliations des auteurs :
Csaba Sándor 1 ; Quan-Hui Yang 2
@article{10_4064_aa161227_27_4,
author = {Csaba S\'andor and Quan-Hui Yang},
title = {A lower bound of {Ruzsa{\textquoteright}s} number related to the {Erd\H{o}s{\textendash}Tur\'an} conjecture},
journal = {Acta Arithmetica},
pages = {161--169},
publisher = {mathdoc},
volume = {180},
number = {2},
year = {2017},
doi = {10.4064/aa161227-27-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161227-27-4/}
}
TY - JOUR AU - Csaba Sándor AU - Quan-Hui Yang TI - A lower bound of Ruzsa’s number related to the Erdős–Turán conjecture JO - Acta Arithmetica PY - 2017 SP - 161 EP - 169 VL - 180 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa161227-27-4/ DO - 10.4064/aa161227-27-4 LA - en ID - 10_4064_aa161227_27_4 ER -
%0 Journal Article %A Csaba Sándor %A Quan-Hui Yang %T A lower bound of Ruzsa’s number related to the Erdős–Turán conjecture %J Acta Arithmetica %D 2017 %P 161-169 %V 180 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa161227-27-4/ %R 10.4064/aa161227-27-4 %G en %F 10_4064_aa161227_27_4
Csaba Sándor; Quan-Hui Yang. A lower bound of Ruzsa’s number related to the Erdős–Turán conjecture. Acta Arithmetica, Tome 180 (2017) no. 2, pp. 161-169. doi: 10.4064/aa161227-27-4
Cité par Sources :