A note on sumsets of subgroups in ${\mathbb Z}_{p}^{*}$
Acta Arithmetica, Tome 161 (2013) no. 4, pp. 387-395
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $A$ be a multiplicative subgroup of $\mathbb Z_p^*$. Define the $k$-fold sumset of $A$ to be $kA=\{x_1+\dots +x_k:x_i \in A$, $1\leq i\leq k\}$. We show that $6A\supseteq \mathbb Z_p^*$ for $|A| > p^{11/23 +\epsilon }$. In addition, we extend a result of Shkredov to show that $|2A|\gg |A|^{8/5-\epsilon }$ for $|A|\ll p^{5/9}$.
Keywords:
multiplicative subgroup mathbb * define k fold sumset ka dots i leq leq supseteq mathbb * epsilon addition extend result shkredov epsilon
Affiliations des auteurs :
Derrick Hart 1
@article{10_4064_aa161_4_5,
author = {Derrick Hart},
title = {A note on sumsets of subgroups in ${\mathbb Z}_{p}^{*}$},
journal = {Acta Arithmetica},
pages = {387--395},
publisher = {mathdoc},
volume = {161},
number = {4},
year = {2013},
doi = {10.4064/aa161-4-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161-4-5/}
}
Derrick Hart. A note on sumsets of subgroups in ${\mathbb Z}_{p}^{*}$. Acta Arithmetica, Tome 161 (2013) no. 4, pp. 387-395. doi: 10.4064/aa161-4-5
Cité par Sources :