A note on sumsets of subgroups in ${\mathbb Z}_{p}^{*}$
Acta Arithmetica, Tome 161 (2013) no. 4, pp. 387-395.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $A$ be a multiplicative subgroup of $\mathbb Z_p^*$. Define the $k$-fold sumset of $A$ to be $kA=\{x_1+\dots +x_k:x_i \in A$, $1\leq i\leq k\}$. We show that $6A\supseteq \mathbb Z_p^*$ for $|A| > p^{11/23 +\epsilon }$. In addition, we extend a result of Shkredov to show that $|2A|\gg |A|^{8/5-\epsilon }$ for $|A|\ll p^{5/9}$.
DOI : 10.4064/aa161-4-5
Keywords: multiplicative subgroup mathbb * define k fold sumset ka dots i leq leq supseteq mathbb * epsilon addition extend result shkredov epsilon

Derrick Hart 1

1 Department of Mathematics Rockhurst University Kansas City, MO 64110, U.S.A.
@article{10_4064_aa161_4_5,
     author = {Derrick Hart},
     title = {A note on sumsets of subgroups in ${\mathbb Z}_{p}^{*}$},
     journal = {Acta Arithmetica},
     pages = {387--395},
     publisher = {mathdoc},
     volume = {161},
     number = {4},
     year = {2013},
     doi = {10.4064/aa161-4-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161-4-5/}
}
TY  - JOUR
AU  - Derrick Hart
TI  - A note on sumsets of subgroups in ${\mathbb Z}_{p}^{*}$
JO  - Acta Arithmetica
PY  - 2013
SP  - 387
EP  - 395
VL  - 161
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa161-4-5/
DO  - 10.4064/aa161-4-5
LA  - en
ID  - 10_4064_aa161_4_5
ER  - 
%0 Journal Article
%A Derrick Hart
%T A note on sumsets of subgroups in ${\mathbb Z}_{p}^{*}$
%J Acta Arithmetica
%D 2013
%P 387-395
%V 161
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa161-4-5/
%R 10.4064/aa161-4-5
%G en
%F 10_4064_aa161_4_5
Derrick Hart. A note on sumsets of subgroups in ${\mathbb Z}_{p}^{*}$. Acta Arithmetica, Tome 161 (2013) no. 4, pp. 387-395. doi : 10.4064/aa161-4-5. http://geodesic.mathdoc.fr/articles/10.4064/aa161-4-5/

Cité par Sources :