Mean value theorems for $L$-functions over prime polynomials for the rational function field
Acta Arithmetica, Tome 161 (2013) no. 4, pp. 371-385.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The first and second moments are established for the family of quadratic Dirichlet $L$-functions over the rational function field at the central point ${s=1/2}$, where the character $\chi $ is defined by the Legendre symbol for polynomials over finite fields and runs over all monic irreducible polynomials $P$ of a given odd degree. Asymptotic formulae are derived for fixed finite fields when the degree of $P$ is large. The first moment obtained here is the function field analogue of a result due to Jutila in the number field setting. The approach is based on classical analytical methods and relies on the use of the analogue of the approximate functional equation for these $L$-functions.
DOI : 10.4064/aa161-4-4
Keywords: first second moments established family quadratic dirichlet l functions rational function field central point where character chi defined legendre symbol polynomials finite fields runs monic irreducible polynomials given odd degree asymptotic formulae derived fixed finite fields degree large first moment obtained here function field analogue result due jutila number field setting approach based classical analytical methods relies analogue approximate functional equation these l functions

Julio C. Andrade 1 ; Jonathan P. Keating 2

1 Institute for Computational and Experimental Research in Mathematics (ICERM) Brown University 121 South Main Street Providence, RI 02903, U.S.A.
2 School of Mathematics University of Bristol Bristol BS8 1TW, UK
@article{10_4064_aa161_4_4,
     author = {Julio C. Andrade and Jonathan P. Keating},
     title = {Mean value theorems for $L$-functions over
 prime polynomials for the rational function field},
     journal = {Acta Arithmetica},
     pages = {371--385},
     publisher = {mathdoc},
     volume = {161},
     number = {4},
     year = {2013},
     doi = {10.4064/aa161-4-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa161-4-4/}
}
TY  - JOUR
AU  - Julio C. Andrade
AU  - Jonathan P. Keating
TI  - Mean value theorems for $L$-functions over
 prime polynomials for the rational function field
JO  - Acta Arithmetica
PY  - 2013
SP  - 371
EP  - 385
VL  - 161
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa161-4-4/
DO  - 10.4064/aa161-4-4
LA  - en
ID  - 10_4064_aa161_4_4
ER  - 
%0 Journal Article
%A Julio C. Andrade
%A Jonathan P. Keating
%T Mean value theorems for $L$-functions over
 prime polynomials for the rational function field
%J Acta Arithmetica
%D 2013
%P 371-385
%V 161
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa161-4-4/
%R 10.4064/aa161-4-4
%G en
%F 10_4064_aa161_4_4
Julio C. Andrade; Jonathan P. Keating. Mean value theorems for $L$-functions over
 prime polynomials for the rational function field. Acta Arithmetica, Tome 161 (2013) no. 4, pp. 371-385. doi : 10.4064/aa161-4-4. http://geodesic.mathdoc.fr/articles/10.4064/aa161-4-4/

Cité par Sources :